Institute of Prediction Technology & Forensic Mathematics (PT&FM)
President: John Wong

Institute of Prediction Technology & Forensic Mathematics (PT&FM)

按此進入中文網頁Click here to view English version.

Analysis of `Fate Particle' (Chz) & Destiny Characteristics
Lunar day of birth (d)12345678910 11121314151617181920 21222324252627282930
E=2: `Chz' Zone No. 1223344556 6778899101011 11001122334
E=3: `Chz' Zone No. 4125236347 45856967107 81189091011011
E=4: `Chz' Zone No. 11412052316 3427453856 496751078611
E=5: `Chz' Zone No. 61141270523 8163492745 103856114967
E=6: `Chz' Zone No. 961141210705 23118163409 27451103856

`Timeon' (Chz) & Destiny Characteristics Formula
Explanation`E' is the `Track Number' of the characteristics of a person. Since gravity of the moon can affect human's thinkings and behaviours, `d' is the lunar day of a month, not reckoned on a solar base. `Chz' is a special `Timeon' (Fate Particle). Owing to the fact that `Chz' is a crucial variable of many `Timeon Formulae', it is the most important `Fate Particle'. The constitution of it's related `Timeons' form a special `Time Gene' which can determine the `Destiny Characteristics' of a person. Hence, the value of `Chz' can be regarded as a `Code' of finger-prints of personal `Destiny Characteristics'. `I[n]' is an integer function such that it takes the integral part of number `n' without rounding up the number. `Chz=(Mod 12)' is a modulated function such that if Chz>11 then `Chz' becomes `Chz-12' and if Chz<0 then `Chz' becomes `Chz+12'. Thus, the value range of `Chz=(Mod 12)' is from 0 to 11.
Example of E2 FormulaIf E=2 and d=30, Chz=1+I[d/2] (Mod 12). Chz=1+I[30/2] (Mod 12). Chz=1+I[15] (Mod 12). Chz=1+15 (Mod 12). Chz=16 (Mod 12). Chz=16-12. Chz=4.
Example of E3 FormulaIf E=3 and d=25, Chz=1+I[d/3]+3x{I[(d-1)/3]-I[(d-2)/3]} (Mod 12). Chz=1+I[25/3]+3x{I[(25-1)/3]-I[(25-2)/3]} (Mod 12). Chz=1+I[8.333]+3x{I[24/3]-I[23/3]} (Mod 12). Chz=1+8+3x{I[8]-I[7.666]} (Mod 12). Chz=9+3x{8-7} (Mod 12). Chz=9+3x1 (Mod 12). Chz=9+3 (Mod 12). Chz=12 (Mod 12). Chz=12-12. Chz=0.
Example of E4 FormulaIf E=4 and d=1, Chz=11-7x(d-1)+4x{I[(d+1)/4]-I[d/4]}+5xI[(d-1)/4] (Mod 12). Chz=11-7x(1-1)+4x{I[(1+1)/4]-I[1/4]}+5xI[(1-1)/4] (Mod 12). Chz=11-7x0+4x{I[2/4]-I[0.25]}+5xI[0] (Mod 12). Chz=11-0+4x{I[0.5]-0}+5x0 (Mod 12). Chz=11+4x{0-0}+0 (Mod 12). Chz=11+4x0 (Mod 12). Chz=11+0 (Mod 12). Chz=11 (Mod 12). Chz=11.
Example of E5 FormulaIf E=5 and d=21, Chz=6+5x(d-1)-8xI[(d+1)/5]-4xI[d/5] (Mod 12). Chz=6+5x(21-1)-8xI[(21+1)/5]-4xI[21/5] (Mod 12). Chz=6+5x20-8xI[22/5]-4xI[4.2] (Mod 12). Chz=6+100-8xI[4.4]-4x4 (Mod 12). Chz=106-8x4-16 (Mod 12). Chz=106-32-16 (Mod 12). Chz=58 (Mod 12). Chz=58-12x4. Chz=10.
Example of E6 FormulaIf E=6 and d=8, Chz=9-3x(d-1)+8x{I[(d+3)/6]-I[d/6]}-4xI[(d+2)/6]-I[(d-1)/6] (Mod 12). Chz=9-3x(8-1)+8x{I[(8+3)/6]-I[8/6]}-4xI[(8+2)/6]-I[(8-1)/6] (Mod 12). Chz=9-3x7+8x{I[11/6]-I[1.333]}-4xI[10/6]-I[7/6] (Mod 12). Chz=9-21+8x{I[1.833]-1}-4xI[1.667]-I[1.167] (Mod 12). Chz=-12+8x{1-1}-4x1-1 (Mod 12). Chz=-12+8x0-4-1 (Mod 12). Chz=-12+0-4-1 (Mod 12). Chz=-17 (Mod 12). Chz=12x2-17. Chz=7.