Institute of Prediction Technology & Forensic Mathematics (PT&FM)
President: John Wong

Institute of Prediction Technology & Forensic Mathematics (PT&FM)

按此進入中文網頁Click here to view English version.

Analysis of `Yearon', Timeon related to `Year'. (Table 1)
r=0>9
Zone Number of `Yearon' / Remainder of Year in y A.D.: R[y/10]R=1R=2R=3R=4R=5R=6R=7R=8R=9R=0
Ff=Chzon / Houron / MonthonKkFuYmMoChzChKeBuLeFuo
Fk=ChzonTaChzKuPrLeKeTgYmTmMo
Fl=ChzonKuLePrLmKeTgYmTmMoTa
Fj=Chzon / HouronChMoTmTaYmLmKuKeKkTg
Luk=8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)91102356568
Yeu=9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)10013467679
Tor=7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)810111245457
Remark: `Yeu' & `Tor' are inter-changeable in pairs. Yeu=9-R[y/10]+5xI[R[y/10]/2]-3xI[R[y/10]/8] (Mod 12)80113265659
Remark: `Yeu' & `Tor' are inter-changeable in pairs. Tor=7+3xR[y/10]-3xI[R[y/10]/2]-3xI[R[y/10]/8] (Mod 12)10101144747
Fui=1+R[y/10]+I[{R[y/10]}/3]+I[{R[y/10]}/4]-I[{R[y/10]}/6]+I[{R[y/10]}/7]-3xI[{R[y/10]}/9] (Mod 12)23578911101
Eut=7-R[y/10]-I[{R[y/10]}/3]-I[{R[y/10]}/4]+I[{R[y/10]}/6]-I[{R[y/10]}/7]+3xI[{R[y/10]}/9] (Mod 12)65310119787
Gun=11-2xR[y/10]+3xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]-I[{R[y/10]}/5]+2xI[{R[y/10]}/6]-I[{R[y/10]}/7]-2xI[{R[y/10]}/9] (Mod 12)910674523911
Fuk=6-R[y/10]+2xI[{R[y/10]}/2]+3xI[{R[y/10]}/4]+3xI[{R[y/10]}/6]-4xI[{R[y/10]}/8]-8xI[{R[y/10]}/9] (Mod 12)56598011326
Ckw=11+R[y/10]+3xI[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)02356898911
Kkw=3-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/8] (Mod 12)20119865653
Hok=5-5xR[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)08311629295
Har=4-R[y/10]+9xI[{R[y/10]}/2]-8xI[{R[y/10]}/3]-I[{R[y/10]}/4]+2xI[{R[y/10]}/5]-3xI[{R[y/10]}/6]+2xI[{R[y/10]}/7]+2xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12)311291078564
Yim=10-R[y/10]+4xI[{R[y/10]}/2]-3xI[{R[y/10]}/3]-5xI[{R[y/10]}/4]+3xI[{R[y/10]}/5]-8xI[{R[y/10]}/6]+8xI[{R[y/10]}/7]-I[{R[y/10]}/8]+4xI[{R[y/10]}/9] (Mod 12)90868274410
Chu=2+4xR[y/10]-I[{R[y/10]}/2]-2xI[{R[y/10]}/3]+3xI[{R[y/10]}/4]-3xI[{R[y/10]}/5]+5xI[{R[y/10]}/6]+I[{R[y/10]}/7]-3xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12)69115605682
Yue=10+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)111245787810
Jit=7-2xR[y/10]+9xI[{R[y/10]}/4]+3xI[{R[y/10]}/8]-I[{R[y/10]}/9] (Mod 12)5318642097
Bos=8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)91102356568
Lis=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)10013467679
Lis=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)810111245457
Clu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:10+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)111245787810
Clu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:6+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)79100134346
Sho=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:11+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)02356898911
Sho=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:5+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)68911023235
Ckn=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)134679109100
Ckn=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:4+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)578101112124
Csu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:1+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)24578101110111
Csu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:3+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)46791001013
Lim=2+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)356891101102
Hee=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:3+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)46791001013
Hee=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:1+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)24578101110111
Cbm=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:4+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)578101112124
Cbm=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)134679109100
Bai=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:5+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)68911023235
Bai=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:11+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)02356898911
Fbg=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:6+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)79100134346
Fbg=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:10+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)111245787810
Kfu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)810111245457
Kfu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1} :9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12)10013467679


Analysis of `Yearon', Timeon related to `Year'. (Table 2)
Zone Number of `Yearon' / Remainder of Year in y A.D.: R[y/12]R=0R=1R=2R=3R=4R=5R=6R=7R=8R=9R=10R=11
Hui=2+y (Mod 12)23456789101101
Huk=10-y (Mod 12)10987654321011
Chi=R[y/12] (Mod 12)01234567891011
Kok=2-R[y/12] (Mod 12)21011109876543
Lun=7-R[y/12] (Mod 12)76543210111098
Hei=1-R[y/12] (Mod 12)10111098765432
Hoo=9+R[y/12] (Mod 12)91011012345678
Ytk=1+R[y/12] (Mod 12)12345678910110
Psu=9-4xR[y/3] (Mod 12)951951951951
Goo=11-9xI[{R[y/12]}/3] (Mod 12)111111222555888
Gwa=7+3xI[{R[y/12]}/3] (Mod 12)777101010111444
Fei=4+R[y/12]+6xI[{R[y/12]+2}/3] (Mod 12)41101891056723
Yee=7+R[y/12] (Mod 12)78910110123456
Kwy=2-3xR[y/4] (Mod 12)211852118521185
Lfo=8+9xR[y/4] (Mod 12)8521185211852 11
Cak=10-7xR[y/12] (Mod 12)10381611492705
Tdo=5+3xR[y/4] (Mod 12)581125811258112
Pik=6+4xR[y/12]+2xI[{R[y/12]}/3]+7xI[{R[y/12]}/4]-3xI[{R[y/12]}/6]+2xI[{R[y/12]}/7]+10xI[{R[y/12]}/9]-2xI[{R[y/12]}/11] (Mod 12)610287112871135
Sui=3+6xR[y/4]-3xI[{R[y/4]}/2] (Mod 12)390639063906
Yng=2+7xR[y/12]+3xI[{R[y/12]}/2]+9xI[{R[y/12]}/3]-6xI[{R[y/12]}/4] (Mod 12)29711310504861
Hoi=11-R[y/12] (Mod 12)11109876543210
Aat=4-R[y/12] (Mod 12)43210111098765
Nik=10-9xI[{R[y/12]}/3] (Mod 12)101010111444777
Yuk=5-3xR[y/4] (Mod 12)521185211852118
Kam=9xR[y/4] (Mod 12)096309630963
Can=9+R[(y+2)/6] (Mod 12) (Mod 12)1101291011012910
Bau=3+R[(y+2)/6] (Mod 12)567834567834
Chm=9xR[y/4] (Mod 12)09630963096 3
Pan=1+9xR[y/4] (Mod 12)11074110741107 4
Yik=2+9xR[y/4] (Mod 12)21185211852118 5
Sik=3+9xR[y/4] (Mod 12)30963096309 6
Wah=4+9xR[y/4] (Mod 12)41107411074110 7
Cip=5+9xR[y/4] (Mod 12)52118521185211 8
Joi=6+9xR[y/4] (Mod 12)63096309630 9
Tst=7+9xR[y/4] (Mod 12)7411074110741 10
Zhi=8+9xR[y/4] (Mod 12)8521185211852 11
Ham=9+9xR[y/4] (Mod 12)96309630963 0
Yut=10+9xR[y/4] (Mod 12)10741107411074 1
Mon=11+9xR[y/4] (Mod 12)11852118521185 2
Kim=8+R[y/12] (Mod 12)89101101234567
Zee=8+R[y/12] (Mod 12)89101101234567
Fym=9+R[y/12] (Mod 12)91011012345678
Sog=10+R[y/12] (Mod 12)10110123456789
Sok=11+R[y/12] (Mod 12)11012345678910
Kun=R[y/12] (Mod 12)01234567891011
Sfu=1+R[y/12] (Mod 12)12345678910110
Tho=2+R[y/12] (Mod 12)23456789101101
Ark=3+R[y/12] (Mod 12)34567891011012
Foo=4+R[y/12] (Mod 12)45678910110123
Sit=5+R[y/12] (Mod 12)56789101101234
Diu=6+R[y/12] (Mod 12)67891011012345
Bag=7+R[y/12] (Mod 12)78910110123456
Coi=8+m-A[h/2]+R[y/12] (Mod 12) or Coi=S+8+R[y/12] (Mod 12) & S=m-A[h/2] (Mod 12)S+8 (Mod 12)S+9 (Mod 12)S+10 (Mod 12)S+11 (Mod 12)S+0 (Mod 12)S+1 (Mod 12)S+2 (Mod 12)S+3 (Mod 12)S+4 (Mod 12)S+5 (Mod 12)S+6 (Mod 12)S+7 (Mod 12)
Sau=8+m+A[h/2]+R[y/12] (Mod 12) or Sau=B+8+R[y/12] (Mod 12) & B=m+A[h/2] (Mod 12)B+8 (Mod 12)B+9 (Mod 12)B+10 (Mod 12)B+11 (Mod 12)B+0 (Mod 12)B+1 (Mod 12)B+2 (Mod 12)B+3 (Mod 12)B+4 (Mod 12)B+5 (Mod 12)B+6 (Mod 12)B+7 (Mod 12)


Analysis of `Yearon', Timeon related to `Year'. (Table 3)
Zone Number of `Yearon' / Numerology (N) in y A.D.: N=57+R[y/60] (Mod 60)N=1~10N=11~20N=21~30N=31~40N=41~50N=51~60
Chn=10-2xI[{56+R[y/60]}/10] (Mod 12)1086420
Chn2=11-2xI[{56+R[y/60]}/10] (Mod 12) or Chn2=Chn+1 (Mod 12)1197531
Chn & Chn210 & 118 & 96 & 74 & 52 & 30 & 1


The Yearon Formula
ExplanationThere are many `Timeons' which are directly related to year. They are named as `Fate Particle' of year or `yearon'. The codes of these `yearons' are: 1.`Ff', 2.`Fk', 3.`Fl', 4.`Fj', 5.`Luk', 6.`Yeu', 7.`Tor', 8.`Fui', 9.`Eut', 10.`Gun', 11.`Fuk', 12.`Ckw', 13.`Kkw', 14.`Hok', 15.`Har', 16.`Yim', 17.`Chu', 18.`Yue', 19.`Jit', 20.`Bos', 21.`Lis', 22.`Clu', 23.`Sho', 24.`Ckn', 25.`Csu', 26.`Lim', 27.`Hee', 28.`Cbm', 29.`Bai', 30.`Fbg', 31.`Kfu', 32.`Hui', 33.`Huk', 34.`Chi', 35.`Kok', 36.`Lun', 37.`Hei', 38.`Hoo', 39.`Ytk', 40.`Psu', 41.`Goo', 42.`Gwa', 43.`Fei', 44.`Yee', 45.`Kwy', 46.`Lfo', 47.`Cak', 48.`Tdo', 49.`Pik', 50.`Sui', 51.`Yng', 52.`Hoi', 53.`Aat', 54.`Nik', 55.`Yuk', 56.`Kam', 57.`Can', 58.`Bau', 59.`Chm', 60.`Pan', 61.`Yik', 62.`Sik', 63.`Wah', 64.`Cip', 65.`Joi', 66.`Tst', 67.`Zhi', 68.`Ham', 69.`Yut', 70.`Mon', 71.`Kim', 72.`Zee', 73.`Fym', 74.`Sog', 75.`Sok', 76.`Kun', 77.`Sfu', 78.`Tho', 79.`Ark', 80.`Foo', 81.`Sit', 82.`Diu', 83.`Bag', 84.`Coi', 85.`Sau', 86.`Chn' & `Chn2'. The `Yearons' each has fantastic power and lays invisible stress with different influence on human destiny within a year. In general, `Ff' means `Academy' or `Announcement'. `Fk' means `Authority' or `Ratification'. `Fl' means `Income' or `Money'. `Fj' means `Adversity' or `Apprehension'. `Luk' means `Power' or `Wealth'. `Yeu' means `Injury' or `Destruction'. `Tor' means `Injury' or `Destruction'. `Fui' means `Outstanding'. `Eut' means `Outstanding'. `Gun' means `Promotion' or `Childbirth'. `Fuk' means `Felicity' or `Childbirth'. `Ckw' means `Knowledge' or `Education'. `Kkw' means `Oration' or `Music'. `Hok' means `Learning' or `School'. `Har' means `Aboard' or `Childbirth'. `Yim' means `Lascivious' or `Masturbation'. `Chu' means `Eating' or `Food'. `Yue' means `Vehicle' or `Transportation'. `Jit' means `Stop' or `Nil'. `Bos' means `Knowledge' or `Culture'. `Lis' means `Strength'. `Clu' means `Protection'. `Sho' means `Loss'. `Ckn' means `Rudeness'. `Csu' means `Honour'. `Lim' means `Sickness',`Loneliness' or `Flight'. `Hee' means `Gathering'. `Cbm' means `Sickliness'. `Bai' means `Bankruptcy'. `Fbg' means `ambush' or `trap'. `Kfu' means `Court' or `Litigation'. `Hui' means `Weakness' or `Empty'. `Huk' means `Sorrow' or `Loss'. `Chi' means `Arts'. `Kok' means `Design'. `Lun' means `Marriage' or `Female'. `Hei' means `Happiness' or `Pregnancy'. `Hoo' means `Consumption' or `Exhaustion'. `Ytk' means `Rescue'. `Psu' means `Puncture' or `Wounded'. `Goo' means `Loneliness' or `detention'. `Gwa' means `Helplessness' or `detention'. `Fei' means `Plague'. `Yee' means `Medical treatment' or `Severe sickness'. `Kwy' means `Peerage'. `Lfo' means `Bombard' or `Gunshot'. `Cak' means `Thief' or `Steal'. `Tdo' means `Thief' or `Steal'. `Pik' means `Bang' or `Thunder'. `Sui' means `Flood' or `FPikd'. `Yng' means `Wounded' or `Surgery'. `Hoi' means `Disaster' or `Sickness'. `Aat' means `Collapse' or `Death'. `Nik' means `Water' or `Drown'. `Yuk' means `Detention' or `Imprison'. `Kam' means `Wealth' or `Money'. `Can' means `Parturition' or `Reincarnation'. `Bau' means `Pregnancy' or `Childbirth'. `Chm' means `Bravery'. `Pan' means `Advance'. `Yik' means `Ride' or `Motion'. `Sik' means `Rest' or `Dead'. `Wah' means `Desolation' or `Devotion'. `Cip' means `Robbery' or `Kidnapping'. `Joi' means `Calamity' or `Disaster'. `Tst' means `Smite male'. `Zhi' means `Accusation'. `Ham' means `Adultery'. `Yut' means `Smite female'. `Mon' means `Death' or `Loss'. `Kim' means `War' or `Wound'. `Zee' means `Fall down' or `Dead body'. `Fym' means `Fire' or `Burning'. `Sog' means `Death' or `Mourning'. `Sok' means `Seizing'. `Kun' means `Police' or `Litigation'. `Sfu' means `Death order' or `Sick'. `Tho' means `Destruction'. `Ark' means `Danger' or `Disaster'. `Foo' means `Murder'. `Sit' means `Quarrel' or `Lick'. `Diu' means `Condolence' or `Console'. `Bag' means `Influenza' or `Sick'. `Coi' means `Genius'. `Sau' means `Life limit'. `Chn' & `Chn2' mean `Empty', `Loss' or `Extermination'. The Yearon Formulae for year in `y' A.D. are: Ff=Chzon/Houron/Monthon &C[U=1:Mo, U=2:Chz, U=3:Ch, U=4:Ke, U=5:Bu, U=6:Le, U=7:Fuo, U=8:Kk, U=9:Fu, U=10:Ym] or Ff=Chzon/Houron/Monthon &C[U=1:Mo, U=2:Chz, U=3:Ch, U=4:Ke, U=5:Bu, U=6:Le, U=7:Fuo, U=8:Kk, U=9:Fu, U=10:Ym]. Fk=Chzon &C[R=R[y/10]: R=0:Mo, R=1:Ta, R=2:Chz, R=3:Ku, R=4:Pr, R=5:Le, R=6:Ke, R=7:Tg, R=8:Ym, R=9:Tm] or Fk=Chzon &C[U=1:Pr, U=2:Le, U=3:Ke, U=4:Tg, U=5:Ym, U=6:Tm, U=7:Mo, U=8:Ta, U=9:Chz, U=10:Ku]. Fl=Chzon &C[R=R[y/10]: R=0:Ta, R=1:Ku, R=2:Le, R=3:Pr, R=4:Lm, R=5:Ke, R=6:Tg, R=7:Ym, R=8:Tm, R=9:Mo] or Fl=Chzon &C[U=1:Lm, U=2:Ke, U=3:Tg, U=4:Ym, U=5:Tm, U=6:Mo, U=7:Ta, U=8:Ku, U=9:Le, U=10:Pr]. Fj=Chzon/Houron &C[R=R[y/10]: R=0:Tg, R=1:Ch, R=2:Mo, R=3:Tm, R=4:Ta, R=5:Ym, R=6:Lm, R=7:Ku, R=8:Ke, R=9:Kk] or Fj=Chzon/Houron &C[U=1:Ta, U=2:Ym, U=3:Lm, U=4:Ku, U=5:Ke, U=6:Kk, U=7:Tg, U=8:Ch, U=9:Mo, U=10:Tm]. Luk=8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12). Yeu=9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12). Tor=7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12). `Yeu' & `Tor' are interchangeable in pairs. If Yeu=9-R[y/10]+5xI[R[y/10]/2]-3xI[R[y/10]/8] (Mod 12) then Tor=7+3xR[y/10]-3xI[R[y/10]/2]-3xI[R[y/10]/8] (Mod 12). [Remarks: `Yeu' and `Tor' must be interchanged in pairs. The values of `Yeu' and `Tor' for even solar year `y' are same as the original pairs.] Fui=1+R[y/10]+I[{R[y/10]}/3]+I[{R[y/10]}/4]-I[{R[y/10]}/6]+I[{R[y/10]}/7]-3xI[{R[y/10]}/9] (Mod 12). Eut=7-R[y/10]-I[{R[y/10]}/3]-I[{R[y/10]}/4]+I[{R[y/10]}/6]-I[{R[y/10]}/7]+3xI[{R[y/10]}/9] (Mod 12). Gun=11-2xR[y/10]+3xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]-I[{R[y/10]}/5]+2xI[{R[y/10]}/6]-I[{R[y/10]}/7]-2xI[{R[y/10]}/9] (Mod 12). Fuk=6-R[y/10]+2xI[{R[y/10]}/2]+3xI[{R[y/10]}/4]+3xI[{R[y/10]}/6]-4xI[{R[y/10]}/8]-8xI[{R[y/10]}/9] (Mod 12). Ckw=11+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12). Kkw=3-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/8] (Mod 12). Hok=5-5xR[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12). Har=4-R[y/10]+9xI[{R[y/10]}/2]-8xI[{R[y/10]}/3]-I[{R[y/10]}/4]+2xI[{R[y/10]}/5]-3xI[{R[y/10]}/6]+2xI[{R[y/10]}/7]+2xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12). Yim=10-R[y/10]+4xI[{R[y/10]}/2]-3xI[{R[y/10]}/3]-5xI[{R[y/10]}/4]+3xI[{R[y/10]}/5]-8xI[{R[y/10]}/6]+8xI[{R[y/10]}/7]-I[{R[y/10]}/8]+4xI[{R[y/10]}/9] (Mod 12). Chu=2+4xR[y/10]-I[{R[y/10]}/2]-2xI[{R[y/10]}/3]+3xI[{R[y/10]}/4]-3xI[{R[y/10]}/5]+5xI[{R[y/10]}/6]+I[{R[y/10]}/7]-3xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12). Yue=10+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12). The general formula is Yue=3+U+I[U/3]-2xI[U/5]-I[U/6]+I[U/7]+2xI[U/10] (Mod 12). Jit=7-2xR[y/10]+9xI[{R[y/10]}/4]+3xI[{R[y/10]}/8]-I[{R[y/10]}/9] (Mod 12). Bos=8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12). The standard formula is: Lis={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+1, R[(SC+y)/2]=1:-1}] (Mod 12) or Lis=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Lis=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12). The standard formula is: Clu={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+2, R[(SC+y)/2]=1:-2}] (Mod 12) or Clu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:10+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Clu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:6+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12). The standard formula is: Sho={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+3, R[(SC+y)/2]=1:-3}] (Mod 12) or Sho=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:11+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Sho=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:5+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12). The standard formula is: Ckn={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+4, R[(SC+y)/2]=1:-4}] (Mod 12) or Ckn=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Ckn=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:4+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12). The standard formula is: Csu={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+5, R[(SC+y)/2]=1:-5}] (Mod 12) or Csu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:1+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Csu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:3+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12). Lim=2+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12). The standard formula is: Hee={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+7, R[(SC+y)/2]=1:-7}] (Mod 12) or Hee=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:3+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Hee=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:1+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12). The standard formula is: Cbm={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+8, R[(SC+y)/2]=1:-8}] (Mod 12) or Cbm=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:4+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Cbm=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12). The standard formula is: Bai={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+9, R[(SC+y)/2]=1:-9}] (Mod 12) or Bai=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:5+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Bai=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:11+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12). The standard formula is: Fbg={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+10, R[(SC+y)/2]=1:-10}] (Mod 12) or Fbg=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:6+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Fbg=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:10+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12). The standard formula is: Kfu={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+11, R[(SC+y)/2]=1:-11}] (Mod 12) or Kfu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=0}:7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12) and Kfu=&C[{SC:m=0, f=1 & R[(SC+y)/2]=1}:9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]] (Mod 12). Hui=2+y (Mod 12). Huk=10-y (Mod 12). Chi=R[y/12] (Mod 12). Kok=2-R[y/12] (Mod 12). Lun=7-R[y/12] (Mod 12). Hei=1-R[y/12] (Mod 12). Hoo=9+R[y/12] (Mod 12). Ytk=1+R[y/12] (Mod 12). Psu=9-4xR[y/3] (Mod 12). Goo=11-9xI[{R[y/12]}/3] (Mod 12). Gwa=7+3xI[{R[y/12]}/3] (Mod 12). Fei=4+R[y/12]+6xI[{R[y/12]+2}/3] (Mod 12). Yee=7+R[y/12] (Mod 12) or Yee=11+Z (Mod 12). Kwy=2-3xR[y/4] (Mod 12). Lfo=8+9xR[y/4] (Mod 12). Cak=10-7xR[y/12] (Mod 12). Tdo=5+3xR[y/4] (Mod 12). Pik=6+4xR[y/12]+2xI[{R[y/12]}/3]+7xI[{R[y/12]}/4]-3xI[{R[y/12]}/6]+2xI[{R[y/12]}/7]+10xI[{R[y/12]}/9]-2xI[{R[y/12]}/11] (Mod 12). Sui=3+6xR[y/4]-3xI[{R[y/4]}/2] (Mod 12). Yng=2+7xR[y/12]+3xI[{R[y/12]}/2]+9xI[{R[y/12]}/3]-6xI[{R[y/12]}/4] (Mod 12). Hoi=11-R[y/12] (Mod 12). Aat=4-R[y/12] (Mod 12). Nik=10-9xI[{R[y/12]}/3] (Mod 12). Yuk=5-3xR[y/4] (Mod 12). Can=9+R[(y+2)/6] (Mod 12). Bau=3+R[(y+2)/6] (Mod 12). Chm=9xR[y/4] (Mod 12). Pan=1+9xR[y/4] (Mod 12). Yik=2+9xR[y/4] (Mod 12). Sik=3+9xR[y/4] (Mod 12). Wah=4+9xR[y/4] (Mod 12). Cip=5+9xR[y/4] (Mod 12). Joi=6+9xR[y/4] (Mod 12). Tst=7+9xR[y/4] (Mod 12). Zhi=8+9xR[y/4] (Mod 12). Ham=9+9xR[y/4] (Mod 12). Yut=10+9xR[y/4] (Mod 12). Mon=11+9xR[y/4] (Mod 12). Kim=8+R[y/12] (Mod 12). Zee=8+R[y/12] (Mod 12). Fym=9+R[y/12] (Mod 12). Sog=10+R[y/12] (Mod 12). Sok=11+R[y/12] (Mod 12). Kun=R[y/12] (Mod 12). Sfu=1+R[y/12] (Mod 12). Tho=2+R[y/12] (Mod 12). Ark=3+R[y/12] (Mod 12). Foo=4+R[y/12] (Mod 12). Sit=5+R[y/12] (Mod 12). Diu=6+R[y/12] (Mod 12). Bag=7+R[y/12] (Mod 12). Coi=S+8+R[y/12] (Mod 12) or Coi=8+m-A[h/2]+R[y/12] (Mod 12). Sau=B+8+R[y/12] (Mod 12) or Sau=8+m+A[h/2]+R[y/12] (Mod 12). Chn & Chn2: Chn=10-2xI[{56+R[y/60]}/10] (Mod 12) & Chn2=11-2xI[{56+R[y/60]}/10] (Mod 12) or Chn2=Chn+1 (Mod 12). `U' is the alphabetical order of the stem of year and `Z' is the root of year. `SC' is the `Sex Code' of a person. The `Sex Code' of male is `m' and that of female is `f'. In general, the value of `m' is assigned to `0' and the value of `f' is `1'. The `Sex Code' of transsexual is the original sex at birth. The `Sex Code' of hermaphrodite or people have no sex could be either `m' or `f'. In this case, both sex codes should be used to check out which one is more accurate. `S' is the zone which marks the position of `Soul'. `B' is the zone which marks the position of `Body'. `y' is the year reckoning in a solar calender. `&C[ ]' is a conditional function of an event such that the mathematical expression after the `:' sign must be operated if the event occurs (i.e. The conditional `&C[ ]' becomes true.). `R[m/n]' is a remainder function such that it takes the remainder of `m' divided by `n'. `n' is a natural number. `I[n]' is an integer function such that it takes the integral part of number `n' without rounding up the number. `Yearon=(Mod 12)' is a modulated function such that if Yearon>11 then `Yearon' becomes `Yearon-12' and if Yearon<0 then `Yearon' becomes `Yearon+12'. Thus, the value range of `Yearon=(Mod 12)' is from 0 to 11.
Example of Formula: FfIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Ff=Chzon/Houron/Monthon &C[U=1:Mo, U=2:Chz, U=3:Ch, U=4:Ke, U=5:Bu, U=6:Le, U=7:Fuo, U=8:Kk, U=9:Fu, U=10:Ym] or Ff=Chzon/Houron/Monthon &C[U=1:Mo, U=2:Chz, U=3:Ch, U=4:Ke, U=5:Bu, U=6:Le, U=7:Fuo, U=8:Kk, U=9:Fu, U=10:Ym]'. Ff=Fu.
Example of Formula: FkIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Fk=Chzon &C[R=R[y/10]: R=0:Mo, R=1:Ta, R=2:Chz, R=3:Ku, R=4:Pr, R=5:Le, R=6:Ke, R=7:Tg, R=8:Ym, R=9:Tm] or Fk=Chzon &C[U=1:Pr, U=2:Le, U=3:Ke, U=4:Tg, U=5:Ym, U=6:Tm, U=7:Mo, U=8:Ta, U=9:Chz, U=10:Ku]'. Fk=Chz.
Example of Formula: FlIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Fl=Chzon &C[R=R[y/10]: R=0:Ta, R=1:Ku, R=2:Le, R=3:Pr, R=4:Lm, R=5:Ke, R=6:Tg, R=7:Ym, R=8:Tm, R=9:Mo] or Fl=Chzon &C[U=1:Lm, U=2:Ke, U=3:Tg, U=4:Ym, U=5:Tm, U=6:Mo, U=7:Ta, U=8:Ku, U=9:Le, U=10:Pr]'. Fl=Le.
Example of Formula: FjIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Fj=Chzon/Houron &C[R=R[y/10]: R=0:Tg, R=1:Ch, R=2:Mo, R=3:Tm, R=4:Ta, R=5:Ym, R=6:Lm, R=7:Ku, R=8:Ke, R=9:Kk] or Fj=Chzon/Houron &C[U=1:Ta, U=2:Ym, U=3:Lm, U=4:Ku, U=5:Ke, U=6:Kk, U=7:Tg, U=8:Ch, U=9:Mo, U=10:Tm]'. Fj=Mo.
Example of Formula: LukIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Luk=8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)'. Luk=8+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8] (Mod 12). Luk=8+2+I[2/2]-3xI[2/8] (Mod 12). Luk=8+2+I[1]-3xI[0.25] (Mod 12). Luk=10+1-3x0 (Mod 12). Luk=11 (Mod 12). Luk=11.
Example of Formula: YeuIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Yeu=9+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)'. Yeu=9+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8] (Mod 12). Yeu=9+2+I[2/2]-3xI[2/8] (Mod 12). Yeu=11+I[1]-3xI[0.25] (Mod 12). Yeu=11+1-3x0 (Mod 12). Yeu=12 (Mod 12). Yeu=12-12. Yeu=0.
Example of Formula: TorIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Tor=7+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)'. Tor=7+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8] (Mod 12). Tor=7+2+I[2/2]-3xI[2/8] (Mod 12). Tor=9+I[1]-3xI[0.25] (Mod 12). Tor=9+1-3x0 (Mod 12). Tor=10 (Mod 12). Tor=10.
Example of Interchange `Yeu' & `Tor' Formula: Yeu`Yeu' & `Tor' are interchangeable in pairs. If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Yeu=9-R[y/10]+5xI[R[y/10]/2]-3xI[R[y/10]/8] (Mod 12)'. Yeu=9-R[2012/10]+5xI[R[2012/10]/2]-3xI[R[2012/10]/8] (Mod 12). Yeu=9-2+5xI[2/2]-3xI[2/8] (Mod 12). Yeu=7+5xI[1]-3xI[0.25] (Mod 12). Yeu=7+5x1-3x0 (Mod 12). Yeu=12 (Mod 12). Yeu=12-12. Yeu=0. [Remarks: `Yeu' and `Tor' must be interchanged in pairs. The values of `Yeu' and `Tor' for even solar year `y' are same as the original pairs.]
Example of Interchange `Yeu' & `Tor' Formula: Tor`Yeu' & `Tor' are interchangeable in pairs. If y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Tor=7+3xR[y/10]-3xI[R[y/10]/2]-3xI[R[y/10]/8] (Mod 12)'. Tor=7+3xR[2012/10]-3xI[R[2012/10]/2]-3xI[R[2012/10]/8] (Mod 12). Tor=7+3x2-3xI[2/2]-3xI[2/8] (Mod 12). Tor=13-3xI[1]-3xI[0.25] (Mod 12). Tor=13-3x1-3x0 (Mod 12). Tor=10 (Mod 12). Tor=10. [Remarks: `Yeu' and `Tor' must be interchanged in pairs. The values of `Yeu' and `Tor' for even solar year `y' are same as the original pairs.]
Example of Formula: FuiIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Fui=1+R[y/10]+I[{R[y/10]}/3]+I[{R[y/10]}/4]-I[{R[y/10]}/6]+I[{R[y/10]}/7]-3xI[{R[y/10]}/9] (Mod 12)'. Fui=1+R[2012/10]+I[{R[2012/10]}/3]+I[{R[2012/10]}/4]-I[{R[2012/10]}/6]+I[{R[2012/10]}/7]-3xI[{R[2012/10]}/9] (Mod 12). Fui=1+2+I[2/3]+I[2/4]-I[2/6]+I[2/7]-3xI[2/9] (Mod 12). Fui=3+I[0.666]+I[0.5]-I[0.333]+I[0.285]-3xI[0.222] (Mod 12). Fui=3+0+0-0+0-3x0 (Mod 12). Fui=3 (Mod 12). Fui=3.
Example of Formula: EutIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Eut=7-R[y/10]-I[{R[y/10]}/3]-I[{R[y/10]}/4]+I[{R[y/10]}/6]-I[{R[y/10]}/7]+3xI[{R[y/10]}/9] (Mod 12)'. Eut=7-R[2012/10]-I[{R[2012/10]}/3]-I[{R[2012/10]}/4]+I[{R[2012/10]}/6]-I[{R[2012/10]}/7]+3xI[{R[2012/10]}/9] (Mod 12). Eut=7-2-I[2/3]-I[2/4]+I[2/6]-I[2/7]+3xI[2/9] (Mod 12). Eut=5-I[0.666]-I[0.5]+I[0.333]-I[0.285]+3xI[0.222] (Mod 12). Eut=5-0-0+0-0+3x0 (Mod 12). Eut=5 (Mod 12). Eut=5.
Example of Formula: GunIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Gun=11-2xR[y/10]+3xI[{R[y/10]}/2]-2xI[{R[y/10]}/3]-I[{R[y/10]}/5]+2xI[{R[y/10]}/6]-I[{R[y/10]}/7]-2xI[{R[y/10]}/9] (Mod 12)'. Gun=11-2xR[2012/10]+3xI[{R[2012/10]}/2]-2xI[{R[2012/10]}/3]-I[{R[2012/10]}/5]+2xI[{R[2012/10]}/6]-I[{R[2012/10]}/7]-2xI[{R[2012/10]}/9] (Mod 12). Gun=11-2x2+3xI[2/2]-2xI[2/3]-I[2/5]+2xI[2/6]-I[2/7]-2xI[2/9] (Mod 12). Gun=11-4+3xI[1]-2xI[0.666]-I[0.4]+2xI[0.333]-I[0.285]-2xI[0.222] (Mod 12). Gun=7+3x1-2x0-0+2x0-0-2x0 (Mod 12). Gun=7+3 (Mod 12). Gun=10 (Mod 12). Gun=10.
Example of Formula: FukIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Fuk=6-R[y/10]+2xI[{R[y/10]}/2]+3xI[{R[y/10]}/4]+3xI[{R[y/10]}/6]-4xI[{R[y/10]}/8]-8xI[{R[y/10]}/9] (Mod 12)'. Fuk=6-R[2012/10]+2xI[{R[2012/10]}/2]+3xI[{R[2012/10]}/4]+3xI[{R[2012/10]}/6]-4xI[{R[2012/10]}/8]-8xI[{R[2012/10]}/9] (Mod 12). Fuk=6-2+2xI[2/2]+3xI[2/4]+3xI[2/6]-4xI[2/8]-8xI[2/9] (Mod 12). Fuk=4+2xI[1]+3xI[0.5]+3xI[0.333]-4xI[0.25]-8xI[0.222] (Mod 12). Fuk=4+2x1+3x0+3x0-4x0-8x0 (Mod 12). Fuk=4+2 (Mod 12). Fuk=6 (Mod 12). Fuk=6.
Example of Formula: CkwIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Ckw=11+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)'. Ckw=11+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8] (Mod 12). Ckw=11+2+I[2/2]-3xI[2/8] (Mod 12). Ckw=13+I[1]-3xI[0.25] (Mod 12). Ckw=13+1-3x0 (Mod 12). Ckw=14 (Mod 12). Ckw=14-12. Ckw=2.
Example of Formula: KkwIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Kkw=3-R[y/10]-I[{R[y/10]}/2]+3xI[{R[y/10]}/8] (Mod 12)'. Kkw=3-R[2012/10]-I[{R[2012/10]}/2]+3xI[{R[2012/10]}/8] (Mod 12). Kkw=3-2-I[2/2]+3xI[2/8] (Mod 12). Kkw=1-I[1]+3xI[0.25] (Mod 12). Kkw=1-1+3x0 (Mod 12). Kkw=1-1+3x0 (Mod 12). Kkw=0 (Mod 12). Kkw=0.
Example of Formula: HokIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Hok=5-5xR[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)'. Hok=5-5xR[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8] (Mod 12). Hok=5-5x2+I[2/2]-3xI[2/8] (Mod 12). Hok=5-10+I[1]-3xI[0.25] (Mod 12). Hok=-5+1-3x0 (Mod 12). Hok=-4 (Mod 12). Hok=12-4. Hok=8.
Example of Formula: HarIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Har=4-R[y/10]+9xI[{R[y/10]}/2]-8xI[{R[y/10]}/3]-I[{R[y/10]}/4]+2xI[{R[y/10]}/5]-3xI[{R[y/10]}/6]+2xI[{R[y/10]}/7]+2xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12)'. Har=4-R[2012/10]+9xI[{R[2012/10]}/2]-8xI[{R[2012/10]}/3]-I[{R[2012/10]}/4]+2xI[{R[2012/10]}/5]-3xI[{R[2012/10]}/6]+2xI[{R[2012/10]}/7]+2xI[{R[2012/10]}/8]-2xI[{R[2012/10]}/9] (Mod 12). Har=4-2+9xI[2/2]-8xI[2/3]-I[2/4]+2xI[2/5]-3xI[2/6]+2xI[2/7]+2xI[2/8]-2xI[2/9] (Mod 12). Har=2+9xI[1]-8xI[0.666]-I[0.5]+2xI[0.4]-3xI[0.333]+2xI[0.285]+2xI[0.25]-2xI[0.222] (Mod 12). Har=2+9x1-8x0-0+2x0-3x0+2x0+2x0-2x0 (Mod 12). Har=2+9 (Mod 12). Har=11 (Mod 12). Har=11.
Example of Formula: YimIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Yim=10-R[y/10]+4xI[{R[y/10]}/2]-3xI[{R[y/10]}/3]-5xI[{R[y/10]}/4]+3xI[{R[y/10]}/5]-8xI[{R[y/10]}/6]+8xI[{R[y/10]}/7]-I[{R[y/10]}/8]+4xI[{R[y/10]}/9] (Mod 12)'. Yim=10-R[2012/10]+4xI[{R[2012/10]}/2]-3xI[{R[2012/10]}/3]-5xI[{R[2012/10]}/4]+3xI[{R[2012/10]}/5]-8xI[{R[2012/10]}/6]+8xI[{R[2012/10]}/7]-I[{R[2012/10]}/8]+4xI[{R[2012/10]}/9] (Mod 12). Yim=10-2+4xI[2/2]-3xI[2/3]-5xI[2/4]+3xI[2/5]-8xI[2/6]+8xI[2/7]-I[2/8]+4xI[2/9] (Mod 12). Yim=8+4xI[1]-3xI[0.6666]-5xI[0.5]+3xI[0.4]-8xI[0.3333]+8xI[0.2857]-I[0.25]+4xI[0.2222] (Mod 12). Yim=8+4x1-3x0-5x0+3x0-8x0+8x0-0+4x0 (Mod 12). Yim=12 (Mod 12). Yim=12-12. Yim=0.
Example of Formula: ChuIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Chu=2+4xR[y/10]-I[{R[y/10]}/2]-2xI[{R[y/10]}/3]+3xI[{R[y/10]}/4]-3xI[{R[y/10]}/5]+5xI[{R[y/10]}/6]+I[{R[y/10]}/7]-3xI[{R[y/10]}/8]-2xI[{R[y/10]}/9] (Mod 12)'. Chu=2+4xR[2012/10]-I[{R[2012/10]}/2]-2xI[{R[2012/10]}/3]+3xI[{R[2012/10]}/4]-3xI[{R[2012/10]}/5]+5xI[{R[2012/10]}/6]+I[{R[2012/10]}/7]-3xI[{R[2012/10]}/8]-2xI[{R[2012/10]}/9] (Mod 12). Chu=2+4x2-I[2/2]-2xI[2/3]+3xI[2/4]-3xI[2/5]+5xI[2/6]+I[2/7]-3xI[2/8]-2xI[2/9] (Mod 12). Chu=2+8-I[1]-2xI[0.666]+3xI[0.25]-3xI[0.4]+5xI[0.333]+I[0.285]-3xI[0.25]-2xI[0.222] (Mod 12). Chu=10-1-2x0+3x0-3x0+5x0+0-3x0-2x0 (Mod 12). Chu=9 (Mod 12). Chu=9.
Example of Formula: YueIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Yue=10+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)'. Yue=10+2+I[2/2]-3xI[2/8] (Mod 12). Yue=12+I[1]-3xI[0.25] (Mod 12). Yue=12+1-3x0 (Mod 12). Yue=13 (Mod 12). Yue=13-12. Yue=1.
Example of Formula: JitIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Jit=7-2xR[y/10]+9xI[{R[y/10]}/4]+3xI[{R[y/10]}/8]-I[{R[y/10]}/9] (Mod 12)'. Jit=7-2xR[2012/10]+9xI[{R[2012/10]}/4]+3xI[{R[2012/10]}/8]-I[{R[2012/10]}/9] (Mod 12). Jit=7-2x2+9xI[2/4]+3xI[2/8]-I[2/9] (Mod 12). Jit=7-4+9xI[0.5]+3xI[0.25]-I[0.222] (Mod 12). Jit=3+9x0+3x0-0 (Mod 12). Jit=3 (Mod 12). Jit=3.
Example of Formula: BosIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Bos=8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)'. Bos=8+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8] (Mod 12). Bos=8+2+I[2/2]-3xI[2/8] (Mod 12). Bos=10+I[1]-3xI[0.25] (Mod 12). Bos=10+1-3x0 (Mod 12). Bos=11 (Mod 12). Bos=11.
Example of Formula: Lis For male, the Sex Code (SC) is `m' and m=0, then SC=0. If y=2012, apply the formula `Lis={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+1, R[(SC+y)/2]=1:-1}] (Mod 12)'. Lis={8+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8]}&C[R[(0+2012)/2]=0:+1, R[(0+2012)/2]=1:-1] (Mod 12). Lis={8+2+I[2/2]-3xI[2/8]}&C[R[2012/2]=0:+1, R[2012/2]=1:-1] (Mod 12). Lis={10+I[1]-3xI[0.25]}&C[0=0:+1, 0=1:-1] (Mod 12). Lis={10+1-3x0}&C[0=0:+1, 0=1:-1] (Mod 12). Lis=11&C[0=0:+1, 0=1:-1] (Mod 12). Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+1' after the sign `:' should be operated. Thus, Lis=11+1 (Mod 12). Lis=12 (Mod 12). Lis=12-12. Lis=0.
Example of Formula: Clu For male, the Sex Code (SC) is `m' and m=0, then SC=0. If y=1987, apply the formula `Clu={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+2, R[(SC+y)/2]=1:-2}] (Mod 12)'. Clu={8+R[1987/10]+I[{R[1987/10]}/2]-3xI[{R[1987/10]}/8]}&C[R[(0+1987)/2]=0:+2, R[(0+1987)/2]=1:-2] (Mod 12). Clu={8+7+I[7/2]-3xI[7/8]}&C[R[1987/2]=0:+2, R[1987/2]=1:-2] (Mod 12). Clu={15+I[3.5]-3xI[0.875]}&C[1=0:+2, 1=1:-2] (Mod 12). Clu={15+3-3x0}&C[1=0:+2, 1=1:-2] (Mod 12). Clu=18&C[1=0:+2, 1=1:-2] (Mod 12). Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-2' after the sign `:' should be operated. Thus, Clu=18-2 (Mod 12). Clu=16 (Mod 12). Clu=16-12. Clu=4.
Example of Formula: Sho For female, the Sex Code (SC) is `f' and f=1, then SC=1. If y=1959, apply the formula `Sho={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+3, R[(SC+y)/2]=1:-3}] (Mod 12)'. Sho={8+R[1959/10]+I[{R[1959/10]}/2]-3xI[{R[1959/10]}/8]}&C[R[(1+1959)/2]=0:+3, R[(1+1959)/2]=1:-3] (Mod 12). Sho={8+9+I[9/2]-3xI[9/8]}&C[R[1960/2]=0:+3, R[1960/2]=1:-3] (Mod 12). Sho={17+I[4.5]-3xI[1.125]}&C[0=0:+3, 0=1:-3] (Mod 12). Sho={17+4-3x1}&C[0=0:+3, 0=1:-3] (Mod 12). Sho=18&C[0=0:+3, 0=1:-3] (Mod 12). Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+3' after the sign `:' should be operated. Thus, Sho=18+3 (Mod 12). Sho=21 (Mod 12). Sho=21-12. Sho=9.
Example of Formula: Ckn For female, the Sex Code (SC) is `f' and f=1, then SC=1. If y=2000, apply the formula `Ckn={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+4, R[(SC+y)/2]=1:-4}] (Mod 12)'. Ckn={8+R[2000/10]+I[{R[2000/10]}/2]-3xI[{R[2000/10]}/8]}&C[R[(1+2000)/2]=0:+4, R[(1+2000)/2]=1:-4] (Mod 12). Ckn={8+0+I[0/2]-3xI[0/8]}&C[R[2001/2]=0:+4, R[2001/2]=1:-4] (Mod 12). Ckn={8+I[0]-3xI[0]}&C[1=0:+4, 1=1:-4] (Mod 12). Ckn={8+0-3x0}&C[1=0:+4, 1=1:-4] (Mod 12). Ckn=8&C[1=0:+4, 1=1:-4] (Mod 12). Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-4' after the sign `:' should be operated. Thus, Ckn=8-4 (Mod 12). Ckn=4 (Mod 12). Ckn=4.
Example of Formula: Csu For male, the Sex Code (SC) is `m' and m=0, then SC=0. If y=2012, apply the formula `Csu={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+5, R[(SC+y)/2]=1:-5}] (Mod 12)'. Csu={8+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8]}&C[R[(0+2012)/2]=0:+5, R[(0+2012)/2]=1:-5] (Mod 12). Csu={8+2+I[2/2]-3xI[2/8]}&C[R[2012/2]=0:+5, R[2012/2]=1:-5] (Mod 12). Csu={10+I[1]-3xI[0.25]}&C[0=0:+5, 0=1:-5] (Mod 12). Csu={10+1-3x0}&C[0=0:+5, 0=1:-5] (Mod 12). Csu=11&C[0=0:+5, 0=1:-5] (Mod 12). Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+5' after the sign `:' should be operated. Thus, Csu=11+5 (Mod 12). Csu=16 (Mod 12). Csu=16-12. Csu=4.
Example of Formula: LimIf y=2012, then R[y/10]=2. Apply the Yearon Formula for year `y' in A.D., `Lim=2+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8] (Mod 12)'. Lim=2+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8] (Mod 12). Lim=2+2+I[2/2]-3xI[2/8] (Mod 12). Lim=4+I[1]-3xI[0.25] (Mod 12). Lim=4+1-3x0 (Mod 12). Lim=5 (Mod 12). Lim=5.
Example of Formula: Hee For male, the Sex Code (SC) is `m' and m=0, then SC=0. If y=1987, apply the formula `Hee={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+7, R[(SC+y)/2]=1:-7}] (Mod 12)'. Hee={8+R[1987/10]+I[{R[1987/10]}/2]-3xI[{R[1987/10]}/8]}&C[R[(0+1987)/2]=0:+7, R[(0+1987)/2]=1:-7] (Mod 12). Hee={8+7+I[7/2]-3xI[7/8]}&C[R[1987/2]=0:+7, R[1987/2]=1:-7] (Mod 12). Hee={15+I[3.5]-3xI[0.875]}&C[1=0:+7, 1=1:-7] (Mod 12). Hee={15+3-3x0}&C[1=0:+7, 1=1:-7] (Mod 12). Hee=18&C[1=0:+7, 1=1:-7] (Mod 12). Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-7' after the sign `:' should be operated. Thus, Hee=18-7 (Mod 12). Hee=11 (Mod 12). Hee=11.
Example of Formula: Cbm For female, the Sex Code (SC) is `f' and f=1, then SC=1. If y=1959, apply the formula `Cbm={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+8, R[(SC+y)/2]=1:-8}] (Mod 12)'. Cbm={8+R[1959/10]+I[{R[1959/10]}/2]-3xI[{R[1959/10]}/8]}&C[R[(1+1959)/2]=0:+8, R[(1+1959)/2]=1:-8] (Mod 12). Cbm={8+9+I[9/2]-3xI[9/8]}&C[R[1960/2]=0:+8, R[1960/2]=1:-8] (Mod 12). Cbm={17+I[4.5]-3xI[1.125]}&C[0=0:+8, 0=1:-8] (Mod 12). Cbm={17+4-3x1}&C[0=0:+8, 0=1:-8] (Mod 12). Cbm=18&C[0=0:+8, 0=1:-8] (Mod 12). Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+8' after the sign `:' should be operated. Thus, Cbm=18+8 (Mod 12). Cbm=26 (Mod 12). Cbm=26-12x2. Cbm=2.
Example of Formula: Bai For female, the Sex Code (SC) is `f' and f=1, then SC=1. If y=2000, apply the formula `Bai={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+9, R[(SC+y)/2]=1:-9}] (Mod 12)'. Bai={8+R[2000/10]+I[{R[2000/10]}/2]-3xI[{R[2000/10]}/8]}&C[R[(1+2000)/2]=0:+9, R[(1+2000)/2]=1:-9] (Mod 12). Bai={8+0+I[0/2]-3xI[0/8]}&C[R[2001/2]=0:+9, R[2001/2]=1:-9] (Mod 12). Bai={8+I[0]-3xI[0]}&C[1=0:+9, 1=1:-9] (Mod 12). Bai={8+0-3x0}&C[1=0:+9, 1=1:-9] (Mod 12). Bai=8&C[1=0:+9, 1=1:-9] (Mod 12). Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-9' after the sign `:' should be operated. Thus, Bai=8-9 (Mod 12). Bai=-1 (Mod 12). Bai=12-1. Bai=11.
Example of Formula: Fbg For male, the Sex Code (SC) is `m' and m=0, then SC=0. If y=2012, apply the formula `Fbg={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+10, R[(SC+y)/2]=1:-10}] (Mod 12)'. Fbg={8+R[2012/10]+I[{R[2012/10]}/2]-3xI[{R[2012/10]}/8]}&C[R[(0+2012)/2]=0:+10, R[(0+2012)/2]=1:-10] (Mod 12). Fbg={8+2+I[2/2]-3xI[2/8]}&C[R[2012/2]=0:+10, R[2012/2]=1:-10] (Mod 12). Fbg={10+I[1]-3xI[0.25]}&C[0=0:+10, 0=1:-10] (Mod 12). Fbg={10+1-3x0}&C[0=0:+10, 0=1:-10] (Mod 12). Fbg=11&C[0=0:+10, 0=1:-10] (Mod 12). Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+10' after the sign `:' should be operated. Thus, Fbg=11+10 (Mod 12). Fbg=21 (Mod 12). Fbg=21-12. Fbg=9.
Example of Formula: Kfu For male, the Sex Code (SC) is `m' and m=0, then SC=0. If y=1987, apply the formula `Kfu={8+R[y/10]+I[{R[y/10]}/2]-3xI[{R[y/10]}/8]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+11, R[(SC+y)/2]=1:-11}] (Mod 12)'. Kfu={8+R[1987/10]+I[{R[1987/10]}/2]-3xI[{R[1987/10]}/8]}&C[R[(0+1987)/2]=0:+11, R[(0+1987)/2]=1:-11] (Mod 12). Kfu={8+7+I[7/2]-3xI[7/8]}&C[R[1987/2]=0:+11, R[1987/2]=1:-11] (Mod 12). Kfu={15+I[3.5]-3xI[0.875]}&C[1=0:+11, 1=1:-11] (Mod 12). Kfu={15+3-3x0}&C[1=0:+11, 1=1:-11] (Mod 12). Kfu=18&C[1=0:+11, 1=1:-11] (Mod 12). Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-11' after the sign `:' should be operated. Thus, Kfu=18-11 (Mod 12). Kfu=7 (Mod 12). Kfu=7.
Example of Formula: HuiIf y=1976, Apply the Yearon Formula for year `y' in A.D., `Hui=2+y (Mod 12)'. Hui=2+1976 (Mod 12). Hui=1978 (Mod 12). Hui=1978-164x12. Hui=10.
Example of Formula: HukIf y=1976, Apply the Yearon Formula for year `y' in A.D., `Huk=10-y (Mod 12)'. Huk=10-1976 (Mod 12). Huk=-1966 (Mod 12). Huk=164x12-1966. Huk=2.
Example of Formula: ChiIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Chi=R[y/12] (Mod 12)'. Chi=R[1976/12] (Mod 12). Chi=8 (Mod 12). Chi=8.
Example of Formula: KokIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Kok=2-R[y/12] (Mod 12)'. Kok=2-R[1976/12] (Mod 12). Kok=2-8 (Mod 12). Kok=-6 (Mod 12). Kok=12-6. Kok=6.
Example of Formula: LunIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Lun=7-R[y/12] (Mod 12)'. Lun=7-R[1976/12] (Mod 12). Lun=7-8 (Mod 12). Lun=-1 (Mod 12). Lun=12-1. Lun=11.
Example of Formula: HeiIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Hei=1-R[y/12] (Mod 12)'. Hei=1-R[1976/12] (Mod 12). Hei=1-8 (Mod 12). Hei=-7 (Mod 12). Hei=12-7. Hei=5.
Example of Formula: HooIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Hoo=9+R[y/12] (Mod 12)'. Hoo=9+R[1976/12] (Mod 12). Hoo=9+8 (Mod 12). Hoo=17 (Mod 12). Hoo=17-12. Hoo=5.
Example of Formula: YtkIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Ytk=1+R[y/12] (Mod 12)'. Ytk=1+R[1976/12] (Mod 12). Ytk=1+8 (Mod 12). Ytk=9 (Mod 12). Ytk=9.
Example of Formula: PsuIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Psu=9-4xR[y/3] (Mod 12)'. Psu=9-4xR[1976/3] (Mod 12). Psu=9-4x8 (Mod 12). Psu=9-32 (Mod 12). Psu=-23 (Mod 12). Psu=12x2-23. Psu=24-23. Psu=1.
Example of Formula: GooIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Goo=11-9xI[{R[y/12]}/3] (Mod 12)'. Goo=11-9xI[{R[1976/12]}/3] (Mod 12). Goo=11-9xI[8/3] (Mod 12). Goo=11-9xI[2.666] (Mod 12). Goo=11-9x2 (Mod 12). Goo=11-18 (Mod 12). Goo=-7 (Mod 12). Goo=12-7. Goo=5.
Example of Formula: GwaIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Gwa=7+3xI[{R[y/12]}/3] (Mod 12)'. Gwa=7+3xI[{R[1976/12]}/3] (Mod 12). Gwa=7+3xI[8/3] (Mod 12). Gwa=7+3xI[2.666] (Mod 12). Gwa=7+3x2 (Mod 12). Gwa=7+6 (Mod 12). Gwa=13 (Mod 12). Gwa=13-12. Gwa=1.
Example of Formula: FeiIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Fei=4+R[y/12]+6xI[{R[y/12]+2}/3] (Mod 12)'. Fei=4+R[1976/12]+6xI[{R[1976/12]+2}/3] (Mod 12). Fei=4+8+6xI[{8+2}/3] (Mod 12). Fei=12+6xI[10/3] (Mod 12). Fei=12+6xI[3.333] (Mod 12). Fei=12+6x3 (Mod 12). Fei=12+18 (Mod 12). Fei=30 (Mod 12). Fei=30-12x2. Fei=30-24. Fei=6.
Example of Formula: YeeIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Yee=7+R[y/12] (Mod 12)'. Yee=7+R[1976/12] (Mod 12). Yee=7+8 (Mod 12). Yee=15 (Mod 12). Yee=15-12. Yee=3.
Example of Formula: KwyIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Kwy=2-3xR[y/4] (Mod 12)'. Kwy=2-3xR[1976/4] (Mod 12). Kwy=2-3x0 (Mod 12). Kwy=2 (Mod 12). Kwy=2.
Example of Formula: LfoIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Lfo=8+9xR[y/4] (Mod 12)'. Lfo=8+9xR[1976/4] (Mod 12). Lfo=8+9x0 (Mod 12). Lfo=8 (Mod 12). Lfo=8.
Example of Formula: CakIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Cak=10-7xR[y/12] (Mod 12)'. Cak=10-7xR[1976/12] (Mod 12). Cak=10-7x8 (Mod 12). Cak=-10-56 (Mod 12). Cak=-46 (Mod 12). Cak=12x4-46. Cak=2.
Example of Formula: TdoIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Tdo=5+3xR[y/4] (Mod 12)'. Tdo=5+3xR[1976/4] (Mod 12). Tdo=5+3x0 (Mod 12). Tdo=5 (Mod 12). Tdo=5.
Example of Formula: PikIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Pik=6+4xR[y/12]+2xI[{R[y/12]}/3]+7xI[{R[y/12]}/4]-3xI[{R[y/12]}/6]+2xI[{R[y/12]}/7]+10xI[{R[y/12]}/9]-2xI[{R[y/12]}/11] (Mod 12)'. Pik=6+4xR[1976/12]+2xI[{R[1976/12]}/3]+7xI[{R[1976/12]}/4]-3xI[{R[1976/12]}/6]+2xI[{R[1976/12]}/7]+10xI[{R[1976/12]}/9]-2xI[{R[1976/12]}/11] (Mod 12). Pik=6+4x8+2xI[8/3]+7xI[8/4]-3xI[8/6]+2xI[8/7]+10xI[8/9]-2xI[8/11] (Mod 12). Pik=6+32+2xI[2.666]+7xI[2]-3xI[1.333]+2xI[1.142]+10xI[0.888]-2xI[0.727] (Mod 12). Pik=38+2x2+7x2-3x1+2x1+10x0-2x0 (Mod 12). Pik=38+4+14-3+2 (Mod 12). Pik=55 (Mod 12). Pik=55-12x4. Pik=55-48. Pik=7.
Example of Formula: SuiIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Sui=3+6xR[y/4]-3xI[{R[y/4]}/2] (Mod 12)'. Sui=3+6xR[1976/4]-3xI[{R[1976/4]}/2] (Mod 12). Sui=3+6x0-3xI[0/2] (Mod 12). Sui=3-3xI[0] (Mod 12). Sui=3-3x0 (Mod 12). Sui=3 (Mod 12). Sui=3.
Example of Formula: YngIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Yng=2+7xR[y/12]+3xI[{R[y/12]}/2]+9xI[{R[y/12]}/3]-6xI[{R[y/12]}/4] (Mod 12)'. Yng=2+7xR[1976/12]+3xI[{R[1976/12]}/2]+9xI[{R[1976/12]}/3]-6xI[{R[1976/12]}/4] (Mod 12). Yng=2+7x8+3xI[8/2]+9xI[8/3]-6xI[8/4] (Mod 12). Yng=58+3xI[4]+9xI[2.666]-6xI[2] (Mod 12). Yng=58+3x4+9x2-6x2 (Mod 12). Yng=76 (Mod 12). Yng=76-6x12. Yng=4.
Example of Formula: HoiIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Hoi=11-R[y/12] (Mod 12)'. Hoi=11-R[1976/12] (Mod 12). Hoi=11-8 (Mod 12). Hoi=3 (Mod 12). Hoi=3.
Example of Formula: AatIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Aat=4-R[y/12] (Mod 12)'. Aat=4-R[1976/12] (Mod 12). Aat=4-8 (Mod 12). Aat=-4 (Mod 12). Aat=12-4. Aat=8.
Example of Formula: NikIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Nik=10-9xI[{R[y/12]}/3] (Mod 12)'. Nik=10-9xI[{R[1976/12]}/3] (Mod 12). Nik=10-9xI[8/3] (Mod 12). Nik=10-9xI[2.666] (Mod 12). Nik=10-9x2 (Mod 12). Nik=10-18 (Mod 12). Nik=-8 (Mod 12). Nik=12-8. Nik=4.
Example of Formula: YukIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Yuk=5-3xR[y/4] (Mod 12)'. Yuk=5-3xR[1976/4] (Mod 12). Yuk=5-3x0 (Mod 12). Yuk=5 (Mod 12). Yuk=5.
Example of Formula: KamIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Kam=9xR[y/4] (Mod 12)'. Kam=9xR[1976/4] (Mod 12). Kam=9x0 (Mod 12). Kam=0 (Mod 12). Kam=0.
Example of Formula: CanIf y=1976, then R[y/6]=2. Apply the Yearon Formula for year `y' in A.D., `Can=9+R[(y+2)/6] (Mod 12)'. Can=9+R[(1976+2)/6] (Mod 12). Can=9+R[1978/6] (Mod 12). Can=9+4 (Mod 12). Can=13 (Mod 12). Can=13-12. Can=1.
Example of Formula: BauIf y=1976, then R[y/6]=2. Apply the Yearon Formula for year `y' in A.D., `Bau=3+R[(y+2)/6] (Mod 12)'. Bau=3+R[(1976+2)/6] (Mod 12). Bau=3+R[1978/6] (Mod 12). Bau=3+4 (Mod 12). Bau=7 (Mod 12). Bau=7.
Example of Formula: ChmIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Chm=9xR[y/4] (Mod 12)'. Chm=9xR[1976/4] (Mod 12). Chm=9x0 (Mod 12). Chm=0 (Mod 12). Chm=0.
Example of Formula: PanIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Pan=1+9xR[y/4] (Mod 12)'. Pan=1+9xR[1976/4] (Mod 12). Pan=1+9x0 (Mod 12). Pan=1 (Mod 12). Pan=1.
Example of Formula: YikIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Yik=2+9xR[y/4] (Mod 12)'. Yik=2+9xR[1976/4] (Mod 12). Yik=2+9x0 (Mod 12). Yik=2 (Mod 12). Yik=2.
Example of Formula: SikIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Sik=3+9xR[y/4] (Mod 12)'. Sik=3+9xR[1976/4] (Mod 12). Sik=3+9x0 (Mod 12). Sik=3 (Mod 12). Sik=3.
Example of Formula: WahIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Wah=4+9xR[y/4] (Mod 12)'. Wah=4+9xR[1976/4] (Mod 12). Wah=4+9x0 (Mod 12). Wah=4 (Mod 12). Wah=4.
Example of Formula: CipIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Cip=5+9xR[y/4] (Mod 12)'. Cip=5+9xR[1976/4] (Mod 12). Cip=5+9x0 (Mod 12). Cip=5 (Mod 12). Cip=5.
Example of Formula: JoiIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Joi=6+9xR[y/4] (Mod 12)'. Joi=6+9xR[1976/4] (Mod 12). Joi=6+9x0 (Mod 12). Joi=6 (Mod 12). Joi=6.
Example of Formula: TstIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Tst=7+9xR[y/4] (Mod 12)'. Tst=7+9xR[1976/4] (Mod 12). Tst=7+9x0 (Mod 12). Tst=7 (Mod 12). Tst=7.
Example of Formula: ZhiIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Zhi=8+9xR[y/4] (Mod 12)'. Zhi=8+9xR[1976/4] (Mod 12). Zhi=8+9x0 (Mod 12). Zhi=8 (Mod 12). Zhi=8.
Example of Formula: HamIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Ham=9+9xR[y/4] (Mod 12)'. Ham=9+9xR[1976/4] (Mod 12). Ham=9+9x0 (Mod 12). Ham=9 (Mod 12). Ham=9.
Example of Formula: YutIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Yut=10+9xR[y/4] (Mod 12)'. Yut=10+9xR[1976/4] (Mod 12). Yut=10+9x0 (Mod 12). Yut=10 (Mod 12). Yut=10.
Example of Formula: MonIf y=1976, then R[y/4]=0. Apply the Yearon Formula for year `y' in A.D., `Mon=11+9xR[y/4] (Mod 12)'. Mon=11+9xR[1976/4] (Mod 12). Mon=11+9x0 (Mod 12). Mon=11 (Mod 12). Mon=11.
Example of Formula: KimIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Kim=8+R[y/12] (Mod 12)'. Kim=8+R[1976/12] (Mod 12). Kim=8+8 (Mod 12). Kim=16 (Mod 12). Kim=16-12. Kim=4.
Example of Formula: ZeeIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Zee=8+R[y/12] (Mod 12)'. Zee=8+R[1976/12] (Mod 12). Zee=8+8 (Mod 12). Zee=16 (Mod 12). Zee=16-12. Zee=4.
Example of Formula: FymIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Fym=9+R[y/12] (Mod 12)'. Fym=9+R[1976/12] (Mod 12). Fym=9+8 (Mod 12). Fym=17 (Mod 12). Fym=17-12. Fym=5.
Example of Formula: SogIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Sog=10+R[y/12] (Mod 12)'. Sog=10+R[1976/12] (Mod 12). Sog=10+8 (Mod 12). Sog=18 (Mod 12). Sog=18-12. Sog=6.
Example of Formula: SokIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Sok=11+R[y/12] (Mod 12)'. Sok=11+R[1976/12] (Mod 12). Sok=11+8 (Mod 12). Sok=19 (Mod 12). Sok=19-12. Sok=7.
Example of Formula: KunIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Kun=R[y/12] (Mod 12)'. Kun=R[1976/12] (Mod 12). Kun=8 (Mod 12). Kun=8.
Example of Formula: SfuIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Sfu=1+R[y/12] (Mod 12)'. Sfu=1+R[1976/12] (Mod 12). Sfu=1+8 (Mod 12). Sfu=9 (Mod 12). Sfu=9.
Example of Formula: ThoIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Tho=2+R[y/12] (Mod 12)'. Tho=2+R[1976/12] (Mod 12). Tho=2+8 (Mod 12). Tho=10 (Mod 12). Tho=10.
Example of Formula: ArkIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Ark=3+R[y/12] (Mod 12)'. Ark=3+R[1976/12] (Mod 12). Ark=3+8 (Mod 12). Ark=11 (Mod 12). Ark=11.
Example of Formula: FooIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Foo=4+R[y/12] (Mod 12)'. Foo=4+R[1976/12] (Mod 12). Foo=4+8 (Mod 12). Foo=12 (Mod 12). Foo=12-12. Foo=0.
Example of Formula: SitIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Sit=5+R[y/12] (Mod 12)'. Sit=5+R[1976/12] (Mod 12). Sit=5+8 (Mod 12). Sit=13 (Mod 12). Sit=13-12. Sit=1.
Example of Formula: DiuIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Diu=6+R[y/12] (Mod 12)'. Diu=6+R[1976/12] (Mod 12). Diu=6+8 (Mod 12). Diu=14 (Mod 12). Diu=14-12. Diu=2.
Example of Formula: BagIf y=1976, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Bag=7+R[y/12] (Mod 12)'. Bag=7+R[1976/12] (Mod 12). Bag=7+8 (Mod 12). Bag=15 (Mod 12). Bag=15-12. Bag=3.
Example of Formula: CoiAssume a person was born at 6a.m. on 29th May,1917. y=1917 and R[y/12]=9. m=5 and h=6. Apply the Yearon Formula for year `y' in A.D., `Coi=8+m-A[h/2]+R[y/12] (Mod 12)'. Coi=8+5-A[6/2]+R[1917/12] (Mod 12). Coi=13-A[3]+9 (Mod 12). Coi=13-3+9 (Mod 12). Coi=19 (Mod 12). Coi=19-12. Coi=7. If y=1976 and S=9, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Coi=S+8+R[y/12] (Mod 12)'. Coi=9+8+R[1976/12] (Mod 12), Coi=17+8 (Mod 12), Coi=25 (Mod 12), Coi=25-12x2, Coi=1.
Example of Formula: SauAssume a person was born at 6a.m. on 29th May,1917. y=1917 and R[y/12]=9. m=5 and h=6. Apply the Yearon Formula for year `y' in A.D., `Sau=8+m+A[h/2]+R[y/12] (Mod 12)'. Sau=8+5+A[6/2]+R[1917/12] (Mod 12). Sau=13+A[3]+9 (Mod 12). Sau=13+3+9 (Mod 12). Sau=25 (Mod 12). Sau=25-12x2. Sau=1. If y=1976 and B=1, then R[y/12]=8. Apply the Yearon Formula for year `y' in A.D., `Sau=B+8+R[y/12] (Mod 12)'. Sau=1+8+R[1976/12] (Mod 12), Sau=9+8 (Mod 12), Sau=17 (Mod 12), Sau=17-12, Sau=5.
Example of Formula: ChnIf y=2012, then R[y/60]=32. Apply the Yearon Formula for year `y' in A.D., `Chn=10-2xI[{56+R[y/60]}/10] (Mod 12)'. Chn=10-2xI[{56+R[2012/60]}/10] (Mod 12). Chn=10-2xI[{56+32}/10] (Mod 12). Chn=10-2xI[88/10] (Mod 12). Chn=10-2xI[8.8] (Mod 12). Chn=10-2x8 (Mod 12). Chn=10-16 (Mod 12). Chn=-6 (Mod 12). Chn=12-6. Chn=6.
Example of Formula: Chn2If y=2012, then R[y/60]=32. Apply the Yearon Formula for year `y' in A.D., `Chn2=11-2xI[{56+R[y/60]}/10] (Mod 12) or Chn2=Chn+1 (Mod 12)'. Chn2=11-2xI[{56+R[2012/60]}/10] (Mod 12). Chn2=11-2xI[{56+32}/10] (Mod 12). Chn2=11-2xI[88/10] (Mod 12). Chn2=11-2xI[8.8] (Mod 12). Chn2=11-2x8 (Mod 12). Chn2=11-16 (Mod 12). Chn2=-5 (Mod 12). Chn2=12-5. Chn2=7. Or, calculate `Chn2' from `Chn'. Chn2=Chn+1 (Mod 12). Chn2=6+1 (Mod 12). Chn2=7 (Mod 12). Chn2=7. Hence. Chn=6 and Chn2=7.