Institute of Prediction Technology & Forensic Mathematics (PT&FM)
President: John Wong

Institute of Prediction Technology & Forensic Mathematics (PT&FM)

按此進入中文網頁Click here to view English version.

Analysis of `Houron', Timeon related to `Hour'. (Table 1)
Zone Number of `Houron' / Time on 24 hour base23-11-33-55-77-99-1111-1313-1515-1717-1919-2121-23
Remainder of solar year (y) :R[y/4]=0:IM=2+A[h/2] (Mod 12)23456789101101
Remainder of solar year (y) :R[y/4]=0:Li=10+A[h/2] (Mod 12)10110123456789
Remainder of solar year (y) :R[y/4]=1:IM=3+A[h/2] (Mod 12)34567891011012
Remainder of solar year (y) :R[y/4]=1:Li=10+A[h/2] (Mod 12)10110123456789
Remainder of solar year (y) :R[y/4]=2:IM=1+A[h/2] (Mod 12)12345678910110
Remainder of solar year (y) :R[y/4]=2:Li=3+A[h/2] (Mod 12)34567891011012
Remainder of solar year (y) :R[y/4]=3:IM=9+A[h/2] (Mod 12)91011012345678
Remainder of solar year (y) :R[y/4]=3:Li=10+A[h/2] (Mod 12)10110123456789
Ch=10-A[h/2] (Mod 12)10987654321011
Kk=4+A[h/2] (Mod 12)45678910110123
Hun=11-A[h/2] (Mod 12)11109876543210
Kip=11+A[h/2] (Mod 12)11012345678910
Tfu=6+A[h/2] (Mod 12)67891011012345
Fgo=2+A[h/2] (Mod 12)23456789101101


Analysis of `Houron', Timeon related to `Hour'. (Table 2)
Spin Mode (SM) of Fortune / Zone Number of `Houron' / Track Number (E) of FateE=2E=3E=4E=5E=6
SM=0: Sen=8+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)811582
SM=0: Muk=9+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)90693
SM=0: Dai=10+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)1017104
SM=0: Lam=11+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)1128115
SM=0: Won=3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)03906
SM=0: Suy=1+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)141017
SM=0: Bam=2+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)251128
SM=0: Sei=3+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)36039
SM=0: Moo=4+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)471410
SM=0: Jut=5+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)582511
SM=0: Toi=6+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)69360
SM=0: Yeo=7+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)710471
SM=1: Sen=8+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)811582
SM=1: Muk=7+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)710471
SM=1: Dai=6+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)69360
SM=1: Lam=5+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)582511
SM=1: Won=4+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)471410
SM=1: Suy=3+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)36039
SM=1: Bam=2+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)251128
SM=1: Sei=1+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)141017
SM=1: Moo=3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)03906
SM=1: Jut=11+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)1128115
SM=1: Toi=10+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)1017104
SM=1: Yeo=9+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)90693


Analysis of `See' & `Seu', Timeons related to `Hour'. (Table 3)
Zone Number of `See' & `Seu' / Solar month (m)Jan.Feb.Mar.Apr.MayJun.Jul.Aug.Sep.Oct.Nov.Dec.
Time (h) : 00:00:00-00:59:596, 87, 98,109, 1110, 011,10, 21, 32, 43, 54, 65, 7
01:00:00-02:59:595, 76, 87, 98, 109, 1110, 011, 10, 21, 32, 43, 54, 6
03:00:00-04:59:594, 65, 76, 87, 98, 109, 1110, 011, 10, 21, 32, 43, 5
05:00:00-06:59:593, 54, 65, 76, 87, 98, 109, 1110, 011, 10, 21, 32, 4
07:00:00-08:59:592, 43, 54, 65, 76, 87, 98, 109, 1110, 011, 10, 21, 3
09:00:00-10:59:591, 32, 43, 54, 65, 76, 87, 98, 109, 1110, 011, 10, 2
11:00:00-12:59:590, 21, 32, 43, 54, 65, 76, 87, 98, 109, 1110, 011, 1
13:00:00-14:59:5911, 10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 1110, 0
15:00:00-16:59:5910, 011, 10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 11
17:00:00-18:59:599, 1110, 011, 10, 21, 32, 43, 54, 65, 76, 87, 98, 10
19:00:00-20:59:598, 109, 1110, 011, 10, 21, 32, 43, 54, 65, 76, 87, 9
21:00:00-22:59:597, 98, 109, 1110, 011, 10, 21, 32, 43, 54, 65, 76, 8
23:00:00-23:59:596, 87, 98, 109, 1110, 011, 10, 21, 32, 43, 54, 65, 7


The Houron Formula
ExplanationThere are altogether twenty-two `Timeons' which are directly or partially related to a couple of hours. They are named as `Fate Particle' of hour or `houron'. The codes of these `hourons' are: 1. `Im', 2. `Li', 3. `Ch', 4. `Kk', 5. `Hun', 6. `Kip', 7. `Tfu', 8. `Fgo', 9.`Sen', 10.`Muk', 11.`Dai', 12.`Lam', 13.`Won', 14.`Suy', 15.`Bam', 16.`Sei', 17.`Moo', 18.`Jut', 19.`Toi', 20.`Yeo', 21.`See', 22.`Seu'. The `Hourons' each has fantastic power and lays invisible stress with different influence on human destiny within two hours. In general, `Im' means `Vicious' or `Kill'. `Li' means `Malevolent' or `Kill'. `Ch' means `Literacy'. `Kk' means `Speech'. `Hun' means `Loss',`Nil' or `Flight'. `Kip' means `Robbery' or `Disaster'. `Tfu' means `Success' or `Award'. `Fgo' means `Entitlement', `Mandate' or `Achieve'. `Sen' means `Born' or `Alive'. `Muk' means `Obscene'. `Dai' means `Begin' or `Mature'. `Lam' means `Officate' or `Reign'. `Won' means `Flourish' or Strong'. `Suy' means `Decline' or `Degenerate'. `Bam' means `Sick'. `Sei' means `Die'. `Moo' means `Store' or `Conceal'. `Jut' means `Cut' or `None'. `Toi' means `Embryo' or `Reincarnate'. `Yeo' means `Nourish' or `Grow'. `See' means `Execute' or `Appoint'. `Seu' means `Injure' or `Sick'. The Houron Formula is: `Im=3+3xR[(y+3)/4]-5xR[(y+1)/2]+7xI[R[(y+3)/4]/3]+A[h/2] (Mod 12), Li=5xR[y/4]+5xR[(y+2)/4]-10xR[y/2]+5xI[R[(y+1)/4]/3]+A[h/2] (Mod 12), Ch=10-A[h/2] (Mod 12), Kk=4+A[h/2] (Mod 12), Hun=11-A[h/2] (Mod 12), Kip=11+A[h/2] (Mod 12), Tfu=6+A[h/2] (Mod 12), Fgo=2+A[h/2] (Mod 12)'. Sen=8+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12). Muk={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+1, R[(SC+y)/2]=1:-1}] (Mod 12). Dai={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+2, R[(SC+y)/2]=1:-2}] (Mod 12). Lam={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+3, R[(SC+y)/2]=1:-3}] (Mod 12). Won={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+4, R[(SC+y)/2]=1:-4}] (Mod 12). Suy={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+5, R[(SC+y)/2]=1:-5}] (Mod 12). Bam=2+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12). Sei={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+7, R[(SC+y)/2]=1:-7}] (Mod 12). Moo={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+8, R[(SC+y)/2]=1:-8}] (Mod 12). Jut={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+9, R[(SC+y)/2]=1:-9}] (Mod 12). Toi={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+10, R[(SC+y)/2]=1:-10}] (Mod 12). Yeo={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+11, R[(SC+y)/2]=1:-11}] (Mod 12). See=5+m-A[h/2] (Mod 12). Seu=7+m-A[h/2] (Mod 12). `y' is the year of birth of a person after `Joint of Year' in Gregorian calendar. If the time of birth is before `Joint of February', it is regarded as previous year. `Joint of Year' is same as `Joint of February'. Usually, it is on 4th February. `m' is the month of birth of a person in Gregorian calendar after `Joint of Month'. If the time of birth of a person is before `Joint of Month', it is regarded as previous month. `h' is the time reckoning on a 24-hour base. `SC' is the `Sex Code' of a person. The `Sex Code' of male is `m' and that of female is `f'. In general, the value of `m' is assigned to `0' and the value of `f' is `1'. The `Sex Code' of transsexual is the original sex at birth. The `Sex Code' of hermaphrodite or people have no sex could be either `m' or `f'. In this case, both sex codes should be used to check out which one is more accurate. `SM' is the `Spin Mode' of one's fortune. If SM=0, it means the `Spin Mode' is clockwise. If SM=1, it means the `Spin Mode' is anti-clockwise. `E' is the `Track' of one's personal characteristics. `R[m/n]' is a remainder function such that it takes the remainder of `m' divided by `n'. `n' is a natural number. `I[n]' is an integer function such that it takes the integral part of number `n' without rounding up the number. `A[n]' is an approximated integer function such that it takes the nearest whole number of `n'. `Houron=(Mod 12)' is a modulated function such that if Houron>11 then `Houron' becomes `Houron-12' and if Houron<0 then `Houron' becomes `Houron+12'. Thus, the value range of `Houron=(Mod 12)' is from 0 to 11.
Example of Formula: ImIf y=1976 and h=0:45, applying the Houron Formula `Im=3+3xR[(y+3)/4]-5xR[(y+1)/2]+7xI[R[(y+3)/4]/3]+A[h/2] (Mod 12)', Im=3+3xR[(1976+3)/4]-5xR[(1976+1)/2]+7xI[R[(1976+3)/4]/3]+A[(0+45/60)/2] (Mod 12). Im=3+3xR[1979/4]-5xR[1977/2]+7xI[R[1979/4]/3]+A[0.75/2] (Mod 12). Im=3+3x3-5x1+7xI[3/3]+A[0.375] (Mod 12). Im=3+9-5+7xI[1]+0 (Mod 12). Im=7+7x1 (Mod 12). Im=7+7 (Mod 12). Im=14 (Mod 12). Im=14-12. Im=2.
Example of Formula: LiIf y=1976 and h=0:45, applying the Houron Formula `Li=5xR[y/4]+5xR[(y+2)/4]-10xR[y/2]+5xI[R[(y+1)/4]/3]+A[h/2] (Mod 12)', Li=5xR[1976/4]+5xR[(1976+2)/4]-10xR[1976/2]+5xI[R[(1976+1)/4]/3]+A[(0+45/60)/2] (Mod 12). Li=5x0+5xR[1978/4]-10x0+5xI[R[1977/4]/3]+A[0.75/2] (Mod 12). Li=5x2-5xI[1/3]+A[0.375] (Mod 12). Li=10-5xI[0.333]+0 (Mod 12). Li=10-5x0 (Mod 12). Li=10-0 (Mod 12). Li=10 (Mod 12). Li=10.
Example of Formula: ChIf h=0:45, applying the Houron Formula `Ch=10-A[h/2] (Mod 12)', Ch=10-A[(0+45/60)/2] (Mod 12). Ch=10-A[0.75/2] (Mod 12). Ch=10-A[0.375] (Mod 12). Ch=10-0 (Mod 12). Ch=10 (Mod 12). Ch=10.
Example of Formula: KkIf h=0:45, applying the Houron Formula `Kk=4+A[h/2] (Mod 12)', Kk=4+A[(0+45/60)/2] (Mod 12). Kk=4+A[0.75/2] (Mod 12). Kk=4+A[0.375] (Mod 12). Kk=4+0 (Mod 12). Kk=4 (Mod 12). Kk=4.
Example of Formula: HunIf h=0:45, applying the Houron Formula `Hun=11-A[h/2] (Mod 12)', Hun=11-A[(0+45/60)/2] (Mod 12). Hun=11-A[0.75/2] (Mod 12). Hun=11-A[0.375] (Mod 12). Hun=11-0 (Mod 12). Hun=11 (Mod 12). Hun=11.
Example of Formula: KipIf h=0:45, applying the Houron Formula `Kip=11+A[h/2] (Mod 12)', Kip=11+A[(0+45/60)/2] (Mod 12). Kip=11+A[0.75/2] (Mod 12). Kip=11+A[0.375] (Mod 12). Kip=11+0 (Mod 12). Kip=11 (Mod 12). Kip=11.
Example of Formula: TfuIf h=0:45, applying the Houron Formula `Tfu=6+A[h/2] (Mod 12)', Tfu=6+A[(0+45/60)/2] (Mod 12). Tfu=6+A[0.75/2] (Mod 12). Tfu=6+A[0.375] (Mod 12). Tfu=6+0 (Mod 12). Tfu=6 (Mod 12). Tfu=6.
Example of Formula: FgoIf h=0:45, applying the Houron Formula `Fgo=2+A[h/2] (Mod 12)', Fgo=2+A[(0+45/60)/2] (Mod 12). Fgo=2+A[0.75/2] (Mod 12). Fgo=2+A[0.375] (Mod 12). Fgo=2+0 (Mod 12). Fgo=2 (Mod 12). Fgo=2.
Example of Formula: SenIf E=3, apply the Houron Formula `Sen=8+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)'. Sen=8+3x(3-2)-9xI[3/4]+3xI[3/6] (Mod 12). Sen=8+3x1-9xI[0.75]+3xI[0.5] (Mod 12). Sen=8+3-9x0+3x0 (Mod 12). Sen=11 (Mod 12). Sen=11.
Example of Formula: Muk For male, the Sex Code (SC) is `m' and m=0, then SC=0. If y=2014 and E=2, apply the Houron Formula `Muk={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+1, R[(SC+y)/2]=1:-1}] (Mod 12)'. Muk={8+3x(2-2)-9xI[2/4]+3xI[2/6]}&C[R[(0+2014)/2]=0:+1, R[(0+2014)/2]=1:-1] (Mod 12). Muk={8+3x0-9xI[0.5]+3xI[0.33]}&C[R[2014/2]=0:+1, R[2014/2]=1:-1] (Mod 12). Muk={8-9x0+3x0}&C[0=0:+1, 0=1:-1] (Mod 12). Muk=8&C[0=0:+1, 0=1:-1] (Mod 12). Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+1' after the sign `:' should be operated. Thus, Muk=8+1 (Mod 12). Muk=9 (Mod 12). Muk=9.
Example of Formula: Dai For female, the Sex Code (SC) is `f' and f=1, then SC=1. If y=2011 and E=6, apply the Houron Formula `Dai={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+2, R[(SC+y)/2]=1:-2}] (Mod 12)'. Dai={8+3x(6-2)-9xI[6/4]+3xI[6/6]}&C[R[(1+2011)/2]=0:+2, R[(1+2011)/2]=1:-2] (Mod 12). Dai={8+3x4-9xI[1.5]+3xI[1]}&C[R[2012)/2]=0:+2, R[2012/2]=1:-2] (Mod 12). Dai={20-9x1+3x1}&C[0=0:+2, 0=1:-2] (Mod 12). Dai=14&C[0=0:+2, 0=1:-2] (Mod 12). Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+2' after the sign `:' should be operated. Dai=14+2 (Mod 12). Dai=16 (Mod 12). Dai=16-12. Dai=4.
Example of Formula: Lam For male, the Sex Code (SC) is `m' and m=0, then SC=0. If y=1995 and E=4, apply the Houron Formula `Lam={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+3, R[(SC+y)/2]=1:-3}] (Mod 12)'. Lam={8+3x(4-2)-9xI[4/4]+3xI[4/6]}&C[R[(0+1995)/2]=0:+3, R[(0+1995)/2]=1:-3] (Mod 12). Lam={8+3x2-9xI[1]+3xI[0.66]}&C[R[1995/2]=0:+3, R[1995/2]=1:-3] (Mod 12). Lam={14-9x1+3x0}&C[1=0:+3, 1=1:-3] (Mod 12). Lam=5&C[1=0:+3, 1=1:-3] (Mod 12). Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-3' after the sign `:' should be operated. Lam=5-3 (Mod 12). Lam=2 (Mod 12). Lam=2.
Example of Formula: Won For female, the Sex Code (SC) is `f' and f=1, then SC=1. If y=1997 and E=5, apply the Houron Formula `Won={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+4, R[(SC+y)/2]=1:-4}] (Mod 12)'. Won={8+3x(5-2)-9xI[5/4]+3xI[5/6]}&C[R[(1+1997)/2]=0:+4, R[(1+1997)/2]=1:-4] (Mod 12). Won={8+3x3-9xI[1.25]+3xI[0.833]}&C[R[1998/2]=0:+4, R[1998/2]=1:-4] (Mod 12). Won={17-9x1+3x0}&C[0=0:+4, 0=1:-4] (Mod 12). Won=8&C[0=0:+4, 0=1:-4] (Mod 12). Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+4' after the sign `:' should be operated. Won=8+4 (Mod 12). Won=12 (Mod 12). Won=12-12. Won=0.
Example of Formula: Suy For male, the Sex Code (SC) is `m' and m=0, then SC=0. If y=2017 and E=3, apply the Houron Formula `Suy={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+5, R[(SC+y)/2]=1:-5}] (Mod 12)'. Suy={8+3x(3-2)-9xI[3/4]+3xI[3/6]}&C[R[(0+2017)/2]=0:+5, R[(0+2017)/2]=1:-5] (Mod 12). Suy={8+3x1-9xI[0.75]+3xI[0.5]}&C[R[2017/2]=0:+5, R[2017/2]=1:-5] (Mod 12). Suy={11-9x0+3x0}&C[1=0:+5, 1=1:-5] (Mod 12). Suy=11&C[1=0:+5, 1=1:-5] (Mod 12). Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-5' after the sign `:' should be operated. Suy=11-5 (Mod 12). Suy=6 (Mod 12). Suy=6.
Example of Formula: BamIf E=5, apply the Houron Formula `Bam=2+3x(E-2)-9xI[E/4]+3xI[E/6] (Mod 12)'. Bam=2+3x(5-2)-9xI[5/4]+3xI[5/6] (Mod 12). Bam=2+3x3-9xI[1.25]+3xI[0.833] (Mod 12). Bam=2+9-9x1+3x0 (Mod 12). Bam=11-9+0 (Mod 12). Bam=2 (Mod 12). Bam=2.
Example of Formula: Sei For female, the Sex Code (SC) is `f' and f=1, then SC=1. If y=2003 and E=2, apply the Houron Formula `Sei={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+7, R[(SC+y)/2]=1:-7}] (Mod 12)'. Sei={8+3x(2-2)-9xI[2/4]+3xI[2/6]}&C[R[(1+2003)/2]=0:+7, R[(1+2003)/2]=1:-7] (Mod 12). Sei={8+3x0-9xI[0.5]+3xI[0.33]}&C[R[2004/2]=0:+7, R[2004/2]=1:-7] (Mod 12). Sei={8-9x0+3x0}&C[0=0:+7, 0=1:-7] (Mod 12). Sei=8&C[0=0:+7, 0=1:-7] (Mod 12). Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+7' after the sign `:' should be operated. Sei=8+7 (Mod 12). Sei=15 (Mod 12). Sei=15-12. Sei=3.
Example of Formula: Moo For male, the Sex Code (SC) is `m' and m=0, then SC=0. If y=2014 and E=6, apply the Houron Formula `Moo={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+8, R[(SC+y)/2]=1:-8}] (Mod 12)'. Moo={8+3x(6-2)-9xI[6/4]+3xI[6/6]}&C[R[(0+2014)/2]=0:+8, R[(0+2014)/2]=1:-8] (Mod 12). Moo={8+3x4-9xI[1.5]+3xI[1]}&C[R[2014/2]=0:+8, R[2014/2]=1:-8] (Mod 12). Moo={20-9x1+3x1}&C[0=0:+8, 0=1:-8] (Mod 12). Moo=14&C[0=0:+8, 0=1:-8] (Mod 12). Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+8' after the sign `:' should be operated. Moo=14+8 (Mod 12). Moo=22 (Mod 12). Moo=22-12. Moo=10.
Example of Formula: Jut For female, the Sex Code (SC) is `f' and f=1, then SC=1. If y=1994 and E=4, apply the Houron Formula `Jut={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+9, R[(SC+y)/2]=1:-9}] (Mod 12)'. Jut={8+3x(4-2)-9xI[4/4]+3xI[4/6]}&C[R[(1+1994)/2]=0:+9, R[(1+1994)/2]=1:-9] (Mod 12). Jut={8+3x2-9xI[1]+3xI[0.666]}&C[R[1995/2]=0:+9, R[1995/2]=1:-9] (Mod 12). Jut={14-9x1+3x0}&C[1=0:+9, 1=1:-9] (Mod 12). Jut=5&C[1=0:+9, 1=1:-9] (Mod 12). Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-9' after the sign `:' should be operated. Jut=5-9 (Mod 12). Jut=-4 (Mod 12). Jut=12-4. Jut=8.
Example of Formula: Toi For male, the Sex Code (SC) is `m' and m=0, then SC=0. If y=1973 and E=5, apply the Houron Formula `Toi={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+10, R[(SC+y)/2]=1:-10}] (Mod 12)'. Toi={8+3x(5-2)-9xI[5/4]+3xI[5/6]}&C[R[(0+1973)/2]=0:+10, R[(0+1973)/2]=1:-10] (Mod 12). Toi={8+3x3-9xI[1.25]+3xI[0.833]}&C[R[1973/2]=0:+10, R[1973/2]=1:-10] (Mod 12). Toi={17-9x1+3x0}&C[1=0:+10, 1=1:-10] (Mod 12). Toi=8&C[1=0:+10, 1=1:-10] (Mod 12). Since the truth value of `&C[1=0]' is false and the truth value of `&C[1=1]' is true, the mathematical expression `-10' after the sign `:' should be operated. Toi=8-10 (Mod 12). Toi=-2 (Mod 12). Toi=12-2. Toi=10.
Example of Formula: Yeo For female, the Sex Code (SC) is `f' and f=1, then SC=1. If y=2019 and E=3, apply the Houron Formula `Yeo={8+3x(E-2)-9xI[E/4]+3xI[E/6]}&C[(SC:m=0, f=1) & {R[(SC+y)/2]=0:+11, R[(SC+y)/2]=1:-11}] (Mod 12)'. Yeo={8+3x(3-2)-9xI[3/4]+3xI[3/6]}&C[R[(1+2019)/2]=0:+11, R[(1+2019)/2]=1:-11] (Mod 12). Yeo={8+3x1-9xI[0.75]+3xI[0.5]}&C[R[2020/2]=0:+11, R[2020/2]=1:-11] (Mod 12). Yeo={11-9x0+3x0}&C[0=0:+11, 0=1:-11] (Mod 12). Yeo=11&C[0=0:+11, 0=1:-11] (Mod 12). Since the truth value of `&C[0=0]' is true and the truth value of `&C[0=1]' is false, the mathematical expression `+11' after the sign `:' should be operated. Yeo=11+11 (Mod 12). Yeo=22 (Mod 12). Yeo=22-12. Yeo=10.
Example of Formula: SeeIf m=7 and h=23:39:42, applying the Houron Formula `See=5+m-A[h/2] (Mod 12)', See=5+7-A[(23+39/60+42/360)/2] (Mod 12). See=12-A[(23+0.65+0.117)/2] (Mod 12). See=12-A[(23.767)/2] (Mod 12). See=12-A[11.883] (Mod 12). See=12-12 (Mod 12). See=0 (Mod 12). See=0.
Example of Formula: SeuIf m=12 and h=5:20:40, applying the Houron Formula `Seu=7+m-A[h/2] (Mod 12)', Seu=7+12-A[(5+20/60+40/360)/2] (Mod 12). Seu=19-A[(5+0.333+0.111)/2] (Mod 12). Seu=19-A[(5.444)/2] (Mod 12). Seu=19-A[2.722] (Mod 12). Seu=19-3 (Mod 12). Seu=16 (Mod 12). Seu=16-12. Seu=4.