Institute of Prediction Technology & Forensic Mathematics (PT&FM)
President: John Wong

Institute of Prediction Technology & Forensic Mathematics (PT&FM)

按此進入中文網頁Click here to view English version.

Analysis of the Track (E) of Personal Characteristics
Zone Number of Soul (S)Zone 0Zone 1Zone 2Zone 3Zone 4Zone 5Zone 6Zone 7Zone 8Zone 9Zone 10Zone 11
Last digit of solar year (y) at birth : R[y/10]=1E=5E=5E=3E=3E=2E=2E=4E=4E=6E=6E=3E=3
R[y/10]=2E=3E=3E=4E=4E=6E=6E=2E=2E=5E=5E=4E=4
R[y/10]=3E=4E=4E=2E=2E=5E=5E=6E=6E=3E=3E=2E=2
R[y/10]=4E=2E=2E=6E=6E=3E=3E=5E=5E=4E=4E=6E=6
R[y/10]=5E=6E=6E=5E=5E=4E=4E=3E=3E=2E=2E=5E=5
R[y/10]=6E=5E=5E=3E=3E=2E=2E=4E=4E=6E=6E=3E=3
R[y/10]=7E=3E=3E=4E=4E=6E=6E=2E=2E=5E=5E=4E=4
R[y/10]=8E=4E=4E=2E=2E=5E=5E=6E=6E=3E=3E=2E=2
R[y/10]=9E=2E=2E=6E=6E=3E=3E=5E=5E=4E=4E=6E=6
R[y/10]=0E=6E=6E=5E=5E=4E=4E=3E=3E=2E=2E=5E=5


Assume `M' is the nearest `Even Zone Number' of `Soul' : M=2xI[S/2]&C[If M=10 then M=2]
Zone Number of Soul (S)Zone 0Zone 2Zone 4Zone 6Zone 8Zone 10Track Formulae: E16,E27,E38,E49,E50
Last digit of solar year (y) at birth : R[y/10]=1 or 6E=5E=3E=2E=4E=6E=3E16: E=5-M+I[M/4]+4xI[M/6]+3xI[M/8]
R[y/10]=2 or 7E=3E=4E=6E=2E=5E=4E27: E=(M+6)/2+I[M/4]-5xI[M/6]+I[M/8]
R[y/10]=3 or 8E=4E=2E=5E=6E=3E=2E38: E=4-M+5xI[M/4]+3xI[M/6]-6xI[M/8]
R[y/10]=4 or 9E=2E=6E=3E=5E=4E=6E49: E=2+2M-7xI[M/4]-2xI[M/6]+2xI[M/8]
R[y/10]=5 or 0E=6E=5E=4E=3E=2E=5E50: E=6-M/2

The Track Formulae of Personal Characteristics
Explanation`E' is the `Track Number' of the characteristics of a person. `S' is the zone which marks the position of `Soul'. `M' is the nearest `Even Zone Number' of `Soul'. `I[n]' is an integer function such that it takes the integral part of number `n' without rounding up the number. `&C[ ]' is a conditional function of an event such that the mathematical expression after the `:' sign must be operated if the event occurs (i.e. The conditional `&C[ ]' becomes true.). `R[y/10]' is a remainder function such that it takes the remainder of the solar year of birth, `y', divided by 10.
Example of Formula E16If y=1986 and S=9, then R[y/10]=6. Since M=2xI[S/2]&C[If M=10 then M=2], then M=2xI[9/2]&C[If M=10 then M=2]. M=2xI[4.5]&C[If M=10 then M=2]. M=2x4&C[If M=10 then M=2]. M=8&C[If M=10 then M=2]. M=8. Since E=5-M+I[M/4]+4xI[M/6]+3xI[M/8], E=5-8+I[8/4]+4xI[8/6]+3xI[8/8]. E=-3+I[2]+4xI[1.333]+3xI[1]. E=-3+2+4x1+3x1. E=-1+4+3. E=6.
Example of Formula E27If y=1912 and S=4, then R[y/10]=2. Since M=2xI[S/2]&C[If M=10 then M=2], then M=2xI[4/2]&C[If M=10 then M=2]. M=2xI[2]&C[If M=10 then M=2]. M=2x2&C[If M=10 then M=2]. M=4&C[If M=10 then M=2]. M=4. Since E=(M+6)/2+I[M/4]-5xI[M/6]+I[M/8], E=(4+6)/2+I[4/4]-5xI[4/6]+I[4/8]. E=10/2+I[1]-5xI[0.666]+I[0.5]. E=5+1-5x0+0. E=6.
Example of Formula E38If y=1998 and S=7, then R[y/10]=8. Since M=2xI[S/2]&C[If M=10 then M=2], then M=2xI[7/2]&C[If M=10 then M=2]. M=2xI[3.5]&C[If M=10 then M=2]. M=2x3&C[If M=10 then M=2]. M=6&C[If M=10 then M=2]. M=6. Since E=4-M+5xI[M/4]+3xI[M/6]-6xI[M/8], E=4-6+5xI[6/4]+3xI[6/6]-6xI[6/8]. E=-2+5xI[1.5]+3xI[1]-6xI[0.75]. E=-2+5x1+3x1-6x0. E=-2+5+3-0. E=6.
Example of Formula E49If y=2004 and S=1, then R[y/10]=4. Since M=2xI[S/2]&C[If M=10 then M=2], then M=2xI[1/2]&C[If M=10 then M=2]. M=2xI[0.5]&C[If M=10 then M=2]. M=2x0&C[If M=10 then M=2]. M=0&C[If M=10 then M=2]. M=0. Since E=2+2M-7xI[M/4]-2xI[M/6]+2xI[M/8], E=2+2x0-7xI[0/4]-2xI[0/6]+2xI[0/8]. E=2+0-7xI[0]-2xI[0]+2xI[0]. E=2-7x0-2x0+2x0. E=2-0-0+0. E=2.
Example of Formula E50If y=1940 and S=11, then R[y/10]=0. Since M=2xI[S/2]&C[If M=10 then M=2], then M=2xI[11/2]&C[If M=10 then M=2]. M=2xI[5.5]&C[If M=10 then M=2]. M=2x5&C[If M=10 then M=2]. M=10&C[If M=10 then M=2]. M=2. Since E=6-M/2, E=6-2/2. E=6-1. E=5.